期刊文献+

基于深度学习的棉花发育期自动观测 被引量:6

Automatic Detection of Cotton Growth Stages Based on Deep Learning
下载PDF
导出
摘要 精准农业是当今世界农业发展的新趋势,实现精准农业的关键基础是能够实时准确地提取作物的生长信息以及确定生长环境状态。现阶段国内外利用图像处理技术对作物生长信息的检测,主要集中在病虫害识别、杂草识别等方面,对作物生长期进行自动识别的相关技术鲜有报道。以棉花田间数字图像为研究对象,结合深度学习的方法,对棉花关键发育期的自动观测方法进行研究。结果表明,相较于传统特征提取方法,提出了卷积神经网络CNN-CGS模型对棉花图像进行特征提取,并进一步结合迁移学习方法训练网络,获得了更加准确的棉花生长期识别结果,同时也为农作物发育期和长势识别迈向自动化发展提供技术支持,为及时掌握棉花生长状况、开展农事活动和现代化农田管理提供新的思路。 Precision agriculture is a trend of current agricultural development,the key to achieve that is the ability to accurately extract crop growth information and determine the state of the growing environment in real time. Most detection methods based on image processing technology for crop growth information mainly focuses on the identification of pests,diseases and weeds. There are few reports on the automatic detection of crop growth period. In this research,the digital image of cotton field was taken as the research object,and the automatic observation method of key development period of cotton was studied through deep learning method. Compared with the traditional feature extraction methods,we adopted the convolutional neural network(CNN) to extract the features of cotton images,and further combined the transfer learning method to train CNN,which obtained more accurate cotton growth period identification results. Meanwhile,it also provided technical support for the automatic identification of crop growth stages and states. On the other hand,a new idea was presented for real-time acquisition of cotton growth status,development of agricultural activities and modern farmland management,and scientific assessment of the impact of meteorological factors on cotton.
作者 胡锦涛 王苗苗 李涛 吴东丽 田东哲 HU Jin-tao;WANG Miao-miao;LI Tao(Zhongyuan Central Plains Phtoelectric Co.,Ltd.,Zhengzhou,Henan 450047)
出处 《安徽农业科学》 CAS 2019年第11期237-240,243,共5页 Journal of Anhui Agricultural Sciences
关键词 作物生长观测 图像识别 深度学习 卷积神经网络 Crop observation Image recognition Deep learning Convolutional neural network
  • 相关文献

参考文献4

二级参考文献18

  • 1刘禾,汪懋华.水果果形判别人工神经网络专家系统的研究[J].农业工程学报,1996,12(1):171-176. 被引量:44
  • 2王鹄生.花卉蔬菜无土栽培技术[M].长沙:湖南科学技术出版社,1997.. 被引量:3
  • 3文新亚.农情监测点布局和信息获取的理论方法与技术研究.中国农业大学博士论文[M].-,2001.. 被引量:1
  • 4Yutaka Sasaki Tsuguo Okamoto.-[J].农业机械学会志,1999,61(2):119-126. 被引量:1
  • 5陈天洲.医学图像处理与可视化技术研究[M].杭州:浙江大学,1998,7.5-7. 被引量:1
  • 6Brivot R,Marchant J A.Segmentation of plants and weeds for a precision crop protection robot using infrared images.IEEE Proceedings on Vision,Image,and Signal Processing,1996,143(2);118-124. 被引量:1
  • 7Elfaki M S,Zhang N,Peterson D E.Weed detection using color machine vision.ASAE Paper 973134,1997. 被引量:1
  • 8Lee W S,Slaughter D C,Giles D K.Robotic weed control system for tomatoes using machine vision system and precision chemical application.ASAE Paper 973093,1997. 被引量:1
  • 9Meyer G E,Mehta T,Kocher M F,et a1.Textural imaging and discriminant analysis for distinguishing weeds for spot spraying.Transactions of the ASAE,1998,41(4):1189-1197. 被引量:1
  • 10Woebbecke D M,Meyer G E,Von Bargen K,et a1.Shape features for identifying young weeds using image analysis.Transactions of the ASAE,1995,38(1):271-281. 被引量:1

共引文献136

同被引文献74

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部