摘要
为解决传统选星算法中定位精度与计算GDOP复杂度之间的矛盾,提出一种改进的快速卫星选择算法。通过利用卫星的高度角和方位角信息划分区域,剔除信噪比小于一定门限的卫星,应用牛顿恒等式的GDOP计算方法,最终确定选择6颗卫星进行定位。用于较少周期计算的最佳卫星几何分布划分区域可以极大减少运算量,理论分析和实验结果表明,与最小GDOP算法相比,在略微牺牲定位精度的情况下,所提算法计算量显著降低,而定位精度优于Quasi-Optimal算法,证明了该算法的有效性。
In order to solve the contradiction between the positioning accuracy in the traditional star selection algorithm and the complexity for calculating the Geometric Dilution of Precision(GDOP),an improved fast satellite selection algorithm is proposed.By using the elevation angle and azimuth information of the satellite to divide the region,the satellite with signal-to-noise ratio less than a certain threshold is eliminated,and the GDOP calculation method of Newton's identity is used to finally determine the selection of six satellites for positioning.The optimal satellite geometric distribution region for less period calculation can greatly reduce the amount of computation.Theoretical analysis and experimental results show that:Compared with the minimum GDOP algorithm,the proposed algorithm has a significant reduction on computation amount when the positioning accuracy is slightly sacrificed,and the positioning accuracy is higher than that of the Quasi-Optimal algorithm,which proves the effectiveness of the algorithm.
作者
胡朝阳
裴炳南
程诚
HU Chao-yang;PEI Bing-nan;CHENG Cheng(Dalian University Liaoning Engineering Laboratory of BeiDou High-Precision Location Service,Dalian 116622,China;Dalian University Dalian Key Laboratory of Environmental Perception and Intelligent Control,Dalian 116622,China)
出处
《电光与控制》
CSCD
北大核心
2019年第6期49-53,共5页
Electronics Optics & Control
基金
国家自然科学基金(61271379)
关键词
选星算法
几何精度因子
高度角
方位角
satellite selection algorithm
GDOP
elevation angle
azimuth