期刊文献+

基于非线性增强和图割的CT序列肝脏肿瘤自动分割 被引量:12

Automatic Segmentation of Liver Tumor in CT Volumes Using Nonlinear Enhancement and Graph Cuts
下载PDF
导出
摘要 针对腹部CT图像肝脏肿瘤对比度低、边界模糊、灰度多样等因素引起的分割困难,提出基于非线性增强和图割的肝脏肿瘤自动分割.首先根据肝脏区域灰度分布特性,采用自适应分段非线性增强和迭代卷积操作提高正常肝实质与肿瘤组织的对比度;然后将增强结果和图像边界信息有效地融入图割能量函数,实现肝脏肿瘤初步自动分割结果;最后采用三维形态学开操作对初步分割结果进行优化,去除其中的误分割区域,提高分割精度.在3Dircadb和XYH数据库上的实验结果表明,该方法能有效地自动分割腹部CT序列中的肝脏肿瘤,且综合分割性能优于现有多种方法. Aiming at the segmentation challenges caused by low contrast, fuzzy boundary and variant grayscale of liver tumors in abdominal CT images, an automatic liver tumor segmentation method based on nonlinear enhancement and graph cuts is proposed. Firstly, adaptive piecewise nonlinear enhancement and iterative convolution operation are used to improve the contrast of healthy liver parenchyma and tumors according to the gray-level distribution characteristics of liver region. Then, the enhancement result and image edge information are effectively integrated into graph cuts cost computation to segment the liver tumors initially and automatically. Finally, three-dimensional morphological opening operation is performed on the initial segmentation result to remove segmentation errors and increase accuracy. The experimental results on 3Dircadb and XYH databases show that the proposed method can segment liver tumors from abdominal CT volumes effectively and automatically, and the comprehensive segmentation performance of the proposed method is superior to that of several existing methods.
作者 廖苗 刘毅志 欧阳军林 余建勇 赵于前 张宝泽 Liao Miao;Liu Yizhi;Ouyang Junlin;Yu Jianyong;Zhao Yuqian;Zhang Baoze(School of Computer Science and Engineering,Hunan University of Science and Technology,Xiangtan 411100;School of Automation,Central South University,Changsha 410083)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第6期1030-1038,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61702179,61772555) 湖南省自然科学基金(2017JJ3091) 中国博士后科学基金(2018M632994) 湖南省教育厅资助科研项目(17C0643) 中南大学博士后基金(202594)
关键词 医学图像分割 图割 非线性增强 肝脏肿瘤 medical image segmentation graph cuts nonlinear enhancement liver tumor
  • 相关文献

同被引文献89

引证文献12

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部