期刊文献+

自适应反距离加权法滤除椒盐噪声 被引量:5

Adaptive Inverse Distance Weighted Interpolation (IDWI) Method to Filter Salt and Pepper Noise
下载PDF
导出
摘要 针对传统降噪算法在去除椒盐噪声的同时,不能很好地保护图像边缘结构信息的问题,改进了自适应的反距离加权插值(IDWI)滤除椒盐噪声.该算法通过自适应选择滤波窗口,通过计算待处理图像椒盐噪声密度,自适应选择反距离加权的权值系数.最后将图像噪声点处的值替换成反距离加权的插值,此插值使用所选自适应窗口内非噪声点像素值的距离加权和.实验结果表明,该算法在滤除椒盐噪声上优于其它算法,滤除噪声的同时能更好地保留图像细节、有更好的峰值信噪比,改善图像视觉效果. The traditional noise reduction algorithm can not protect the edge structure information of the image while removing the salt and pepper noise, and improve the adaptive inverse distance weighted interpolation (IDWI) to remove the salt and pepper noise. The algorithm adaptively selected the filtering window, adaptively selected the weighting coefficient of the inverse distance weighting by calculating the salt and pepper noise density of the image to be processed. Finally, the value at the image noise point was replaced by an inverse distance weighted interpolation that used the distance weighted sum of the non-noise point pixel values within the selected adaptive window. The experimental results show that the proposed algorithm outperforms other algorithms in filtering out salt and pepper noise. It can better preserve image details, better peak signal-to-noise ratio and improve image visual effects while filtering out noise.
作者 周冲 张鹏程 刘欢 桂志国 ZHOU Chong;ZHANG Peng-cheng;LIU Huan;GUI Zhi-guo(Shanxi Provincial Key Laboratory of Biomedical Imaging and Imaging Big Data,North University of China, Taiyuan 030051, China)
出处 《中北大学学报(自然科学版)》 CAS 2019年第4期372-377,384,共7页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(61671413) 国家重大科学仪器设备开发专项(2014YQ24044508) 国家重点研发计划(2016YFC0101602) 国家青年科学基金项目(61801438) 中北大学青年学术带头人项目(QX201801)
关键词 椒盐噪声 反距离加权插值 自适应 图像去噪 salt and pepper noise inverse distance weighted interpolation adaptive image denoising
  • 相关文献

参考文献1

二级参考文献8

  • 1PRATT W K. Digital image processing[ M]. 3rd ed. New York:Wiley, 2001. 被引量:1
  • 2PAL S K, GHOSH A, SHANKAR B U. Segmentation of remotely sensed images with fuzzy thresholding, and quantitative evaluation [J]. Remote Sensing, 2000, 21 (11) :2269-2300. 被引量:1
  • 3JAIN A, ZONGKER D. Feature selection : evaluation, application, and small sample performance[J]. IEEE Trans on Pattern Analysis and Machine IntelUgence,1997,19(2) :153- 158. 被引量:1
  • 4章毓晋.图像工程:上册[M].2版.北京:清华大学出版社,2006. 被引量:1
  • 5WANG Wen, LI Bo, ZHENG Jin, et al. A fast muhi-scale retinex algorithm for color image enhancement[ C]//Proc of International Conference on Wavelet Analysis and Pattern Recognition. 2008:30-31. 被引量:1
  • 6GONZALEZ R C, WOODS R E. Digital image processing[ M]. 2nd ed. [S. l. ] :Pearson Education,2002. 被引量:1
  • 7RAKSHIT S, GHOSH A, SHANKAR B U. Fast mean filtering technique[ J]. Pattern Recognition, 2007,40(3) :890- 897. 被引量:1
  • 8CORMEN H, LEISERSON C E, RIVEST R L, et al. Introduction to algorithms[ M]. 2nd ed. [ S. l. ] :Prentice Hall of India,2001. 被引量:1

共引文献62

同被引文献41

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部