期刊文献+

相场断裂方法发展概况 被引量:11

An Overview of Phase Field Approach to Fracture
下载PDF
导出
摘要 相场断裂方法自 21世纪初开始发展以来,一直备受关注,在裂纹扩展模拟方面表现出了一定的特点,取得了一定的研究成果。本文分析了相场断裂方法较其他断裂模拟方法的优势,简单介绍了相场断裂方法的发展现状和发展趋势:目前脆性断裂相场方法已较为成熟,能够模拟诸多脆性断裂中的经典问题,在此基础上正在朝着解决多场耦合情况下的断裂问题发展,且也取得了一定的研究成果。最后,简单介绍了延性断裂相场方法的发展现状,提出在该方向进行深入研究的展望。 Phase field modeling to fracture has received much attention since the beginning of this century, which exhibits an advantage in fracture propagation simulation. In this work, we compare the phase field approach to fracture with other simulation methods, and show an overview and development of phase field approach to fracture. Up to now, the phase field method has been successfully applied to the brittle fracture and could simulate some classical crack problems. Based on this, the multi-fields problem coupled with the fracture is currently pursued. Furthermore, we introduce the study situation of the phase field simulation to the ductile fracture and put forward its development in the future.
作者 张豪 于继东 裴晓阳 彭辉 李平 蔡灵仓 汤铁钢 ZHANG Hao;YU Jidong;PEI Xiaoyang;PENG Hui;LI Ping;CAI Lingcang;TANG Tiegang(Institute of Fluid Physics, CAEP, Mianyang 621999, China)
出处 《高压物理学报》 EI CAS CSCD 北大核心 2019年第3期125-136,共12页 Chinese Journal of High Pressure Physics
基金 国家自然科学基金面上项目(11772067) 国家自然科学基金青年科学基金(11702277) 国家自然科学基金重点项目(11532012)
关键词 相场断裂方法 数值模拟 脆性断裂 延性断裂 phase field approach to fracture simulation brittle fracture ductile fracture
  • 相关文献

参考文献2

二级参考文献23

  • 1Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing[J]. Int. J. Numer. Meth. Engng., 1999, 45: 601-620. 被引量:1
  • 2Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing[J]. Int. J. Numer. Meth. Engng., 1999, 46: 131-150. 被引量:1
  • 3Stolarska M, Chopp D L, Moes N. Modelling crack growth by level sets in the extended finite element method[J]. Int. J. Numer. Meth. Engng., 2001, 51: 943-960. 被引量:1
  • 4Moes N, Belytschko T. Extended finite element method for cohesive crack growth[J]. Eng. Fract. Mech., 2002, 69: 813-833. 被引量:1
  • 5Belytschko T, Chen H, Xu J X, Zi G. Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment[J]. Int. J. Numer. Meth. Engng., 2003, 58: 1873-1905. 被引量:1
  • 6Sukumar N, Chopp D L, Moran B. Extended finite element method and fast marching method for three-dimensional fatigue crack propagation[J]. Eng. Fract. Mech., 2003, 70: 39-48. 被引量:1
  • 7Song J H, Areias P M A, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes[J]. Int. J. Numer. Meth. Engng., 2006, 67: 868-893. 被引量:1
  • 8Prabel B, Combescure A, Gravouil A. Level set X-FEM non-matching meshes: Application to dynamic crack propagation in elastic-plastic media[J]. Int. J. Numer. Meth. Engng., 2007, 69: 1553-1569. 被引量:1
  • 9Sukumar N, Chopp D L, Moes N, Belytschko T. Modeling holes and inclusions by level sets in the extended finite-element method[J]. Comput. Methods Appl. Mech. Engrg., 2001, 190: 6183-6200. 被引量:1
  • 10Samaniego E, Belytschko T. Continuum-discontinuum modeling of shear bands[J]. Int. J. Numer. Meth. Engng., 2005, 62: 1857-1872. 被引量:1

共引文献4

同被引文献126

引证文献11

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部