期刊文献+

基于视觉和嗅觉的控烟防火智能监控系统

Smoke Control and Fire Prevention Intelligent Monitoring System Based on Vision and Smell
下载PDF
导出
摘要 文章将图像识别和大数据分析技术引入禁烟监控系统中,通过对视频大数据中的抽烟行为和起火冒烟特征识别,以烟雾传感器对弱光环境和视频监测盲区进行辅助监控,由系统发声示警,将视频摘要和其他重要信息传输给PC端和手机端.该系统可为禁烟区域的抽烟行为监督、火灾险情报警及处理、责任追溯等提供有效保障. In this paper, the image recognition and big data analysis technology is introduced into the anti-smoking monitoring system By identifying smoking behavior and fire smog in large video data, and smoke sensor monitoring weak light environment and blind spot in the video, this system is able to transfer video image and other important information to the PC and mobile phone, sending voice warning at the same time This system can provide effective protection by supervising smoking behavior, triggering fire alarm, and tracing liability in non-smoking areas.
作者 李欣 LlXin(School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, Guangdong 518055, China)
出处 《深圳职业技术学院学报》 CAS 2019年第3期13-16,共4页 Journal of Shenzhen Polytechnic
关键词 视觉 大数据 嗅觉 控烟系统 vision big data smell anti-smoking monitoring system
  • 相关文献

参考文献4

二级参考文献50

  • 1BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36. 被引量:1
  • 2BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127. 被引量:1
  • 3HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554. 被引量:1
  • 4BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160. 被引量:1
  • 5LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324. 被引量:1
  • 6VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103. 被引量:1
  • 7VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408. 被引量:1
  • 8YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288. 被引量:1
  • 9POON H, DOMINGOS P. Sum-product networks:a new deep architec- ture[ C ]//Proc of IEEE Intemational Conference on Computer Vi- sion. 2011:689-690. 被引量:1
  • 10BENGIO Y,LECUN Y. Scaling learning algorithms towards AI[ M]// BOTTOU L,CHAPELLE O, DeCOSTE D,et al. Large-Scale Kernel Machines. Cambridge: MIT Press ,2007:321-358. 被引量:1

共引文献608

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部