期刊文献+

求解合作对策解的带有正不定临界项的对称交替方向法

On Solution of Cooperative Game Based on Symmetric Alternating Direction Method with Positive Indefinite Proximal Regularization
下载PDF
导出
摘要 主要研究合作对策解的问题:首先根据核心及Shapley值的特点引入了最公平核心的概念,再将最公平核心转化为具有线性约束的凸二次规划问题,最后运用带有正不定临界项的对称交替方向法对其求解.由于问题的可行域为简单闭凸集,因此算法是可行的. In this paper, the solution of cooperative game has been considered. Firstly, the definition of the fairest core has been introduced according to the characteristics of the Core and the Shapley value. Secondly, the fairest core has been translated to the convex quadratic programming problem with linear constraint. Finally, the symmetric alternating direction method has been used with positive indefinite proximal regularization to solve the problem. Since the feasible domain is simple closed convex set, the algorithm can be computed.
作者 李孟丽 张俊容 LI Meng-li;ZHANG Jun-rong(School of Mathematics and Statistics, Southwest University, Chongqing 400715, China)
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2019年第5期13-18,共6页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11701470)
关键词 最公平核心 凸二次规划 交替方向法 the fairest cores convex quadratic programming alternating direction method
  • 相关文献

参考文献3

二级参考文献37

  • 1陈雯,张强.模糊合作对策的Shapley值[J].管理科学学报,2006,9(5):50-55. 被引量:45
  • 2黄礼健,吴祈宗,张强.具有模糊联盟值的n人合作博弈的模糊Shapley值[J].北京理工大学学报,2007,27(8):740-744. 被引量:12
  • 3SHAPLEY L S. A Value for n-Person Games [J]. Annals of Mathematics Studies, 1953, 28: 307-318. 被引量:1
  • 4MARES M. Fuzzy Coalition Structures [J]. Fuzzy Sets and System, 2000, 114(1) : 23-33. 被引量:1
  • 5MARES M. Fuzzy Cooperative Games: Cooperation with Vague Expectations [M]. New York: Physieal-Verlag, 2001. 被引量:1
  • 6BRANZEI R, DIMITROV D, TIJS S. Shapley-Like Values for Interval Bankruptcy Games [J]. Economics Bulletin, 2003, 3(9): 1-8. 被引量:1
  • 7ALPARSLAN G0K S Z, BRANZEI O, BRANZEI R, et al. Set-Valued Solution Concepts Using Interval-Type Payoffs for Interval Games [J]. Journal of Mathematical Economics, 2011, 47(4-5).. 621-626. 被引量:1
  • 8ALPARSLAN GOK S Z, BRANZEI R, TIJS S. The Interval Shapley Value: an Axiomatization [J]. Central European Journal of Operations Research, 2010, 18(2): 131-140. 被引量:1
  • 9LINA MALLOZZI, VINCENZO SCALZO, TIJS S. Fuzzy Interval Cooperative Games [J]. Fuzzy Sets and Systems, 2011, 165(1): 98-105. 被引量:1
  • 10CLEMENTE M, FERNANDEZ F R, PUERTO J. Pareto-Optimal Security Strategies in Matrix Games with Fuzzy Pay- offs [J]. Fuzzy Sets and Systems, 2011, 176(1): 36-45. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部