期刊文献+

基于深度学习的局部方向人脸识别算法研究 被引量:9

Research on Local Directional Face Recognition Algorithm Based on Deep Learning
下载PDF
导出
摘要 论文针对人脸识别中的特征选择和单一算法的局限性问题,提出了一种基于深度学习的局部方向人脸识别算法。首先通过定位和分块选取人脸局部敏感区域,然后依次利用LDP算法良好的局部特征提取能力对精选分块区域进行特征提取并最终连接成新的特征脸,然后利用深度学习网络DBN进行逐层贪婪训练,获得良好的网络参数,最后用训练好的网络对测试样本进行人脸测试分类。依次在ORL和MIT-CBCL人脸数据库上进行实验检测,实验结果表明,论文提出的算法与传统单一或融合算法具有更高的识别率,具有良好的局部性能和抗干扰性。 The paper proposes a local directional face recognition algorithm based on deep learning for feature selection in face recognition and the limitation of single algorithm. Firstly,the local sensitive area of the face is selected by positioning and seg. mentation. Then the LDP algorithm's good local feature extraction capability is used to perform feature extraction on the featured block region and finally connect it into a new feature face. Then a layer-by-layer greedy training is performed by using the deep learning network DBN to obtain good network parameters,and finally the trained network is used to test samples for face classifica. tion. Experiments are performed on ORL and MIT-CBCL face databases in sequence. The experimental results show that the pro. posed algorithm has a higher recognition rate than the traditional single or fusion algorithm and has good local performance and an. ti-interference performance.
作者 公维军 吴建军 李晓霞 李晓旭 GONG Weijun;WU Jianjun;LI Xiaoxia;LI Xiaoxu(School of Information Technology and Communication,Hexi University,Zhangye 734000;School of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050)
出处 《计算机与数字工程》 2019年第5期1032-1036,1135,共6页 Computer & Digital Engineering
基金 国家自然科学基金项目(编号:61563030) 河西学院青年教师科研基金项目(编号:QN2017014)资助
关键词 局部方向模式 局部敏感 深度学习 特征选择 人脸识别 local directional pattern local sensitive deep learning feature selection face recognition
  • 相关文献

参考文献7

二级参考文献130

  • 1葛如海,陈彦博,刘志强.基于计算机视觉的驾驶疲劳识别方法的研究[J].中国安全科学学报,2006,16(9):134-138. 被引量:11
  • 2朱夏君,王勋,李必威.人脸识别中的眼睛定位[J].电路与系统学报,2007,12(2):98-100. 被引量:6
  • 3Hjelmas E, Low B K. Face detection: A survey. Journal of Computer Vision and Image Understanding, 2001, 83(3) : 236-274. 被引量:1
  • 4Yang M H, Ahuja N, Kriegman D. Detecting faces in images: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1): 34-58. 被引量:1
  • 5Toyama K. Prolegomena for robust face tracking. MSR- Tech-Report-98-65, Microsoft, 1998. 被引量:1
  • 6Samal A, lyengar P. Automatic recognition and analysis of human faces and facial expressions: A survey. Pattern recognition, 1992, 25(1) : 65--77. 被引量:1
  • 7Zhao W, Chellappa R, Rosenfeld A, Phillips P J. Face recognition- A literature survey. CS-Tech Report-4167, University of Maryland, 2000. 被引量:1
  • 8Zhou J, Lu C Y, Zhang C S, Li Y D. A survey of face recognition. Acta Electronica Sinica, 2000, 28(4) : 102--106(in Chinese). 被引量:1
  • 9Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of faces: A survey. Proceedings of the IEEE,1995, 83(5): 705--740. 被引量:1
  • 10Bledsoe W. Man-machine facial recognition. Tech Report PRI-22, Panoramic Research Inc., Palo Alto, CA, 1966. 被引量:1

共引文献276

同被引文献61

引证文献9

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部