期刊文献+

基于位置服务隐私自关联的隐私保护方案 被引量:10

Privacy self-correlation privacy-preserving scheme in LBS
下载PDF
导出
摘要 随着移动智能终端的普遍运用,基于位置服务(LBS)成为了人们生活中必不可少的部分,在提供便捷生活服务的同时,也引发了用户隐私信息泄露的隐患。在考虑背景信息存在的同时,进一步地考量了用户自身和服务提供商短期缓存的查询记录,避免了攻击者利用查询信息的可能性对用户的隐私信息进行猜测并实现推断攻击。基于用户隐私信息自关联的前提下,提出了2种隐私保护方案——简易隐私自关联的隐私保护算法(Ba-2PS)和扩展隐私自关联的隐私保护算法(En-2PS),其中En-2PS从时间和查询范围2个维度扩展了简易隐私自关联的隐私保护算法,提高了从匿名位置单元和匿名查询内容中推测用户真实信息的不确定性。最后,通过隐私性证明和实验结果证明了方案的有效性和安全性。 The prevalence of mobile intelligent terminals gives the location-based service (LBS) more opportunities to enrich mobile users’ lives. However, mobile users enjoy the convenience with the cost of personal privacy. The side information and mobile user’s recent requirement records were considered, which were obtained or stored by the service provider. Based on the existence of recent requirement records, adversary can employ the inference attack to analysis mobile user’s personal in- formation. Therefore, two schemes were proposed, including of basic privacy self-correlation privacy-preserving scheme (Ba-2PS) and enhanced privacy self-correlation privacy-preserving scheme(En-2PS). In En-2PS, the privacy-preserving scheme was designed from two dimensions of aspects of time factor and query region, which increased the uncertainty infer- ring out the real information. Finally, the privacy analysis was illustrated to proof En-2PS’s privacy degree, then the perfor- mance and privacy evaluation results indicate that En-2PS is effective and efficient.
作者 李维皓 曹进 李晖 LI Weihao;CAO Jin;LI Hui(School of Cyber Engineering, Xidian University, Xi'an 710071,China)
出处 《通信学报》 EI CSCD 北大核心 2019年第5期57-66,共10页 Journal on Communications
基金 国家重点研发计划基金资助项目(No.2017YFB0802203) 国家自然科学基金资助项目(No.61732022 No.61672411 No.61772404 No.U1401251) 陕西省自然科学基础研究计划重大基础研究基金资助项目(No.2016ZDJC-04)~~
关键词 位置服务 隐私保护 位置隐私 查询隐私 k匿名 location service privacy preservation location privacy query privacy k-anonymity
  • 相关文献

参考文献1

二级参考文献88

  • 1CULNAN M J, ARMSTRONG P K. Information privacy concerns, procedural fairness, and impersonal trust: an empirical investigation[J]. Organization Science, 1999, 10(1): 104-115. 被引量:1
  • 2DINEV T, HART P. Privacy concems and intemet use-a model of trade-off factors[C]//,~cademy of Management. c2003:1-6. 被引量:1
  • 3LI H, SARATHY R, XU H. Understanding situational online informa- tion disclosure as a privacy calculus[J]. Journal of Computer Informa- tion Systems, 2010, 51(1): 62-71. 被引量:1
  • 4KEHR F, KOWATSCH T, WENTZEL D, et al. Blissfully ignorant: the effects of general privacy concerns, general institutional trust, and af- fect in the privacy calculus[J]. Information Systems Journal, 2015, 25(6): 607-635. 被引量:1
  • 5MACHANAVAJJHALA A, KIFER D, GEHRKE J, ~t al. /-diversity: privacy beyond k-anonymity[J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2007, 1(1): 3. 被引量:1
  • 6AGRAWAL D, AGGARWAL C C. On the design and quantification of privacy preserving data mining algorithms[C]//The 20th ACM SIG- MOD-SIGACT-SIGART Symposium on Principles of Database Sys- tems. ACM, c2001 : 247-255. 被引量:1
  • 7LIU K, KARGUPTA H, RYAN J. Random projection-based multipli- eative data perturbation for privacy preserving distributed data min- ing[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(1): 92-106. 被引量:1
  • 8OLIVEIRA S R M, ZAIANE O R. Privacy preserving clustering by data transformation[C]//The 18th Brazilian Symposium on Databases. c2003:304-318. 被引量:1
  • 9OLIVEIRA S R M, ZAIANE O R. Privacy preserving clustering by object similarity-based representation and dimensionality reduction transformation[C]/Fl'he Workshop on Privacy and Security Aspects of Data Mining. e2004:21-30. 被引量:1
  • 10OLIVEIRA S R M, ZAIANE 0 R. Privacy preserving frequent itemsetmining[C]//The IEEE International Conference on Privacy, Security and Data Mining-Volume 14, Australian Computer Society. c2002: 43-54. 被引量:1

共引文献74

同被引文献84

引证文献10

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部