摘要
In this paper, we present a study on activity functions for an MLNN (multi-layered neural network) and propose a suitable activity function for data enlargement processing. We have carefully studied the training performance of Sigmoid, ReLu, Leaky-ReLu and L & exp. activity functions for few inputs to multiple output training patterns. Our MLNNs model has L hidden layers with two or three inputs to four or six outputs data variations by BP (backpropagation) NN (neural network) training. We focused on the multi teacher training signals to investigate and evaluate the training performance in MLNNs to select the best and good activity function for data enlargement and hence could be applicable for image and signal processing (synaptic divergence) along with the proposed methods with convolution networks. We specifically used four activity functions from which we found out that L & exp. activity function can suite DENN (data enlargement neural network) training since it could give the highest percentage training abilities compared to the other activity functions of Sigmoid, ReLu and Leaky-ReLu during simulation and training of data in the network. And finally, we recommend L & exp. function to be good for MLNNs and may be applicable for signal processing of data and information enlargement because of its performance training characteristics with multiple teacher training patterns using original generated data and hence can be tried with CNN (convolution neural networks) of image processing.