期刊文献+

磷虾算法优化多分类支持向量机的轴承故障诊断 被引量:6

Rolling bearing fault diagnosis based on multi-classification SVM optimized by krill algorithm
下载PDF
导出
摘要 为了提高滚动轴承故障类型诊断准确度,提出了磷虾算法优化多分类支持向量机的轴承故障诊断方法。对于时频域特征参数的提取,将CEEMD算法与小波包优势结合,提出了CEEMD与小波包半软阈值去噪相结合的提取方法;对于特征参数降维,针对轴承振动信号的非线性特点,使用局部线性嵌入算法降维,对降维后特征参数使用模糊C均值聚类进行验证,可以看出LLE降维不仅降低了计算量而且有利于模式识别;将二叉树法与投票法支持向量机结合,给出了混合多分类支持向量机,使用磷虾算法对其进行参数优化。实验验证可知,磷虾算法优化的多分类支持向量机具有很高的输出精度,轴承状态识别准确率为100%,使用粒子群算法优化的支持向量机输出精度低,轴承状态识别准确率为79%。 To improve fault diagnosis accuracy degree of rolling bearing, fault diagnosis method based on multi- classification support vector machine optimized by krill algorithm is proposed. For extracting time and frequency domain parameters, combing advantages of CEEMD and wavelet packet, parameters extracting method integrating CEEMD and wavelet packet is put forward. For characteristic parameters dimension, considering nonlinearity of bearing vibration signal, LLE algorithm is used to reduce the dimension, clarified by fuzzy C-means clustering, dimensionality reduction not only can reduce computation, but can also benefit pattern recognition. Binary tree and voting method are integrated, so that a new mixed multi-classification SVM is given, and its parameters are optimized by krill algorithm. It can be seen through experiment, output accuracy of SVM optimized by krill algorithm is very high, and bearing state recognition accuracy degree is 100%. Output accuracy of SVM optimized by PSO algorithm is relatively low, and bearing state recognition accuracy degree is 79%.
作者 吕震宇 LV Zhenyu(Shandong Polytechnic, Jinan 250104, CHN)
机构地区 山东职业学院
出处 《制造技术与机床》 北大核心 2019年第5期130-136,共7页 Manufacturing Technology & Machine Tool
基金 省教育厅科研课题(KJ2018ZBB022)
关键词 滚动轴承 故障诊断 多分类支持向量机 磷虾算法 局部线性嵌入算法 rolling bearing fault diagnosis multi-classification SVM krill algorithm LLE algorithm
  • 相关文献

参考文献7

二级参考文献48

  • 1朱玉崧,吴桂涛,张余庆.喷水推进器舵液压系统故障树分析[J].大连海事大学学报,2008,34(z1):94-95. 被引量:1
  • 2马瑞恒,时党勇.爆破振动信号的时频分析[J].振动与冲击,2005,24(4):92-95. 被引量:17
  • 3李肖博,肖仕武,刘万顺,郑涛.基于形态滤波的变压器电流相关保护方案[J].中国电机工程学报,2006,26(6):8-13. 被引量:23
  • 4Zhao Nan,Liu Xiaofeng,Yu Wenli,Wang Supin.ERP instantaneous synchronization analysis based on cross approximate entropy[J].Progress in Natural Science:Materials International,2007,17(B07):161-164. 被引量:2
  • 5Zhou F,Yan B,Demodulated resonance technique in faultdiagnosis of high speed line rolling-mill synchromesh gears[C].//Imaging Systems and Techniques(IST),IEEE International Conference on,IEEE,2012:344-349. 被引量:1
  • 6Raj S,Murali N.Early classification of bearing faults usingmorphological operators and fuzzy inference[J].IEEE Transactions on Industrial Electronics,2013,60(2):567-574. 被引量:1
  • 7Dong Y,Liao M,Zhang X,et ai.Faults diagnosis of rollingelement bearings based on modified morphological method[J].Mechanical Systems and Signal Processing,2011,25(4):1276-1286. 被引量:1
  • 8Wu Z H,Huang N E.Ensemble empirical modedecomposition:a noise-assisted data analysis method[J].Advances in Adaptive Data Analysis,2009,1(1):I-41. 被引量:1
  • 9Harris M C,Blotter J D,Scott D.Sommerfeldt obtaining thecomplex pressure field at the hologram surface for use innear-field acoustical holography when pressure and in-planevelocities are measured[J].The Journal of the Acoustical Society of America,2006,119(2):808-816. 被引量:1
  • 10Zhang L,Xu J,Yang J,et al.Multiscale morphology analysis and its application to fault diagnosis[J].Mechanical Systems and Signal Prpcessing,2008,22(3):597-610. 被引量:1

共引文献143

同被引文献132

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部