期刊文献+

前驱体对三元正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2性能影响的研究 被引量:6

Research on the Effect of Precursor for LiNi_(0. 5)Co_(0. 2)Mn_(0. 3)O_2Cathode Material
下载PDF
导出
摘要 以碳酸锂为锂源,将三种不同厂家的镍钴锰氢氧化物前驱体通过固相烧结法制备锂离子电池三元材料LiNi_(0. 5)Co_(0. 2)Mn_(0. 3)O_2(简称NCM),并用纳米氧化铝溶液对其进行了包覆。采用X射线衍射仪、扫描电子显微镜、恒电流充放电测试仪等对材料的物理和电化学性能进行分析测试。结果表明:在前驱体元素组成基本一致的情况下,包覆前后三种前驱体制备的正极材料半电池首次容量由166. 7 mAh/g、166. 0 mAh/g和166. 1 mAh/g改变为169. 8 mAh/g、167. 4 mAh/g和165. 9 mAh/g,而100周循环保持率由92. 6%、92. 3%和93. 2%上升到96. 2%、96. 0%和96. 3%。这种改善应源于包覆过程中形成的快离子导体抑制了循环过程中电池直流内阻(DCIR)的增加。但对于不同前驱体制备的正极材料,包覆后电子传导能力以及界面相容性会有所不同。 LiNi0.5Co0.2Mn0.3O2 (NCM) cathode material was synthesized by using nickel-cobalt-manganese hydroxide and lithium carbonate through solid-state sintering reaction. Al-coating NCM samples were prepared by nano-Al 2O 3 solution and NCM. Physical and electrochemical properties of samples were measured by XRD, SEM and Charge-discharge system. The results show that for precursors with similar composition, initial capacity of the NCM samples change to 169.8 mAh/g, 167.4 mAh/g and 165.9 mAh/g from 166.7 mAh/g, 166.0 mAh/g and 166.1 mAh/g. And capacity retention of 100th cycles raise to 96.2 %, 96.0 % and 96.3% from 92.6%, 92.3 % and 93.2 % by coating process. This improvement may due to the formation of fast ionic conductor which reduce the DCIR(Direct Current Internal Resistance)during cycling. But for NCM which prepared by different precursors, electronic conduction ability and interfacial compatibility may different after same coating process.
作者 刘大亮 黄文鹏 孙国平 刘亚飞 LIU Da-liang;HUANG Wen-peng;SUN Guo-ping;LIU Ya-fei(Beijing Easpring Material Technology Co.,Ltd.,Beijing 100160,China;BGRIMM Techonology Group,Beijing 100160,China;Jiangsu Easpring Material Technology Co.,Ltd.,Nantong 226133,China)
出处 《硅酸盐通报》 CAS 北大核心 2019年第4期1056-1061,共6页 Bulletin of the Chinese Ceramic Society
基金 江苏省自然科学基金青年基金(BK20160421)
关键词 NCM 包覆 正极材料 NCM coating cathode material
  • 相关文献

参考文献8

二级参考文献19

  • 1李进,习小明,湛中魁,李普良.LiNi_(0.8)Co_(0.2_x)Al_xO_2正极材料的合成与电化学性能研究[J].矿冶工程,2006,26(5):82-85. 被引量:1
  • 2Venkateswara R C ,Reddy A L M, Ishikawa Y,et al. LiNi1/3Co1/3 Mn1/3 O2 graphene composite as a promising cathode for lithium-ion batteries[J]. Aes Appl Mater Inter,2011,3(8) :2 966 -2 972. 被引量:1
  • 3Thackeray M M, Kang S H, Johnson C S, et al. Li2 MnO3-stabilized LiMO2 ( M = Mn, Ni, Co) electrodes for lithium-ion batteries [ J ]. J Mater Chem,2007,17(30) :3 112 -3 125. 被引量:1
  • 4Hummers W S, Offeman R E. Preparation of graphitic oxide [ J ]. J Am Chem Soc,1958,80(6) :1 339 -1 342. 被引量:1
  • 5Wang Z L,Xu D,Huang Y,et al. Facile,mild and fast thermal-de- composition reduction of graphene oxide in air and its application in high-performance lithium batteries [ J ] . Chem Comm, 2012,48 (67) :976 -978. 被引量:1
  • 6Gong Z L, Liu H S, Guo X J, et al. Effects of preparation methods of LiNi0.8 Co0.2 O2 cathode ma-terials on their morphology and elec- trochemical performance[ J]. J Power Sources,2004,136 ( 1 ) : 139 -144. 被引量:1
  • 7Saavedra A J J, Karan N K, Pradhan D K, et al. Synthesis and electrochemical properties of Li ( Ni0.8 Co0.1 Mn0.1) O2 cathode material:Ex situ structural analysis by raman scattering and X-ray diffraction at various stages of charge-discharge process [ J ]. J Power Sources ,2008,183 (2) :761 - 765. 被引量:1
  • 8Yu D Y W,Yanagida K. Structural analysis of Li2MnO3 and related Li-Mn-O materials [ J ]. J Electrochem Soc, 2011,158 ( 9 ) : A1 015 -A1 022. 被引量:1
  • 9Rao C V, Raddy A L M, Ishikawa Y,et al. LiNi1/3 CO1/3 Mn1/3 O2- graphene composite as a promising cathode for lithium-ion batteries [J]. Acs Appl Mater Interfaces,2011,3(8) :2 966 -2 972. 被引量:1
  • 10Yuan S M, Li J X, Yang L T, et al. Preparation and lithium storage performances of mesoporous Fe3O4 @ C microcapsules [ J ]. ACS Appl Mater Interfaces,2011,3 ( 3 ) : 705 - 709. 被引量:1

共引文献22

同被引文献46

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部