期刊文献+

超线性分数次薛定谔方程无穷多解的存在性(英文) 被引量:1

INFINITELY MANY SOLUTIONS FOR A SUPERLINEAR FRACTIONAL SCHRODINGER EQUATIONS
下载PDF
导出
摘要 本文研究了一类分数次薛定谔方程解的存在性问题.利用喷泉定理,得到了在超线性增长条件下方程存在无穷多非平凡解,并且证明了相应解的能量是无界的.本文中非线性项不满足AmbrosettiRabinowitz条件,推广了文献[12]中的结果. In this paper,we study the existence of infinitely many large energy solutions for the superlinear fractional Schrodinger equations via the Fountain Theorem in the critical point theory.In particular,we do not use the classical Ambrosetti-Rabinowitz condition,which extends the result in[12].
作者 张金国 蔡龙生 ZHANG Jin-guo;CAI Long-sheng(College of Mathematics & Information Science,Jiangxi Normal University,Nanchang 330022,China;Department of Mathematics,Shanghai JiaoTong University,Shanghai 200240,China)
出处 《数学杂志》 2019年第3期335-343,共9页 Journal of Mathematics
基金 Supported by NSFC(11371282) Natural Science Foundation of Jiangxi(20142BAB211002)
关键词 分数次薛定谔方程 超线性 喷泉定理 fractional Schrodinger equations superlinear fountain theorem
  • 相关文献

参考文献1

二级参考文献14

  • 1Brezis H, Nirenberg L. Remarks on finding critical points[J]. Commun. Pure Appl. Math., 1991, 44 939-963. 被引量:1
  • 2Bartsch T, Wang Z Q. Existence and multiplicity results for some superlinear elliptic problems on RN[J]. Commun. Part Diff. Equa., 1995, 20: 1725-1741. 被引量:1
  • 3Dinu T L. Entire solutions of SchrSinger elliptic systems with discontinuous nonlinearity and sing- changing potential[J]. Math. Model. Anal., 2006, 11: 1-14. 被引量:1
  • 4Gasinski L, Papageorgiou N S. Nonsmooth critical point theory and nonlinear boundary value problems[M]. Boca Raton, London, New York, Washington D.C.: Chapman and Hall, CRC Press, 20O5. 被引量:1
  • 5Gazzola F, Rrdulescu V. A Nonsmooth Critical Point Theory approach to some nonlinear elliptic equations in Rn[J]. Diff. Inte. Equa., 2000, 13: 47-60. 被引量:1
  • 6Kandilakis D, Kourogenis N C, Papageorgiou functionals via local linking and aplicatons[J]. N S. Two nontrivial critical points for non-smooth J. Global Optim., 2006, 34: 219-244. 被引量:1
  • 7Motreanu D, Panagiotopoulos P D. Minimax Theorems and Qualitative Properties of the solutions of Hemivariational Inequalities[M]. Dordrecht: KLuwer Academic, 1998. 被引量:1
  • 8Motreanu D, Radulescu V. Variational and non-variational methods in nonlinear analysis and bound- ary value problems [M]. Dordrecht, Boston, London: Kluwer Academic Publishers, 2003. 被引量:1
  • 9Motreaun D, Motreaun V V, Papageorgiou N S. Periodic solutions for Nonautonomous systems with Nonsmooth quadratic or superquadratic potential[J]. Topo. Meth. Nonl. Anal., 2004, 24: 269-296. 被引量:1
  • 10Marano S A, Bisci G M, Motreaun D. Multiple solutions for a clas,,of elliptic hemivariational inequalities[J]. J. Math. Anal. Appl., 2008, 337: 85-97. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部