期刊文献+

基于连接自组织发育的稀疏跨越-侧抑制神经网络设计 被引量:2

Design of Sparse Span-lateral Inhibition Neural Network Based on Connection Self-organization Development
下载PDF
导出
摘要 针对跨越–侧抑制神经网络(Span-lateral inhibition neural network, S-LINN)的结构调整及参数学习问题,结合生物神经系统中神经元的稀疏连接特性,依据儿童及青少年智力发展水平与大脑皮层发育之间的相互关系,提出以小世界网络连接模式进行初始稀疏化的连接自组织发育稀疏跨越–侧抑制神经网络设计方法.定义网络连接稀疏度及神经元输出贡献率,设计网络连接增长–修剪规则,根据智力超常组皮层发育与智力水平的对应关系调整和控制网络连接权值,动态调整网络连接实现网络智力的自组织发育.通过非线性动力学系统辨识及函数逼近基准问题的求解,证明在同等连接复杂度的情况下,稀疏连接的跨越–侧抑制神经网络具有更好的泛化能力. Inspired by the sparse connection of neurons in biological nervous system and the relationship between children and adolescents intellectual ability and cortical development, a connection self-organization development-based sparse span-lateral inhibition neural network(s S-LINN) is developed to solve the structure adjustment and parameter learning problem, which adopts the small-world network connection mode as the initial sparse network architecture. A growing-pruning rule of network connection is designed to adjust and control the sparseness of network connections based on the definitions of connection sparseness and neuron output contribution rate. Performance of the proposed sparse S-LINN is evaluated successfully through simulation using nonlinear dynamic system identification and function approximation benchmark problems. It is shown that the proposed s S-LINN can produce a very compact structure with good generalization ability in comparison with other methods.
作者 杨刚 王乐 戴丽珍 杨辉 YANG Gang;WANG Le;DAI Li-Zhen;YANG Hui(School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013;Key Labora- tory of Advanced Control and Optimization of Jiangxi Province, Nanchang 330013)
出处 《自动化学报》 EI CSCD 北大核心 2019年第4期808-818,共11页 Acta Automatica Sinica
基金 国家自然科学基金(61663012 61673172 61733005) 国家留学基金(201509795007) 江西省自然科学基金(20161BAB212054) 江西省教育厅科技项目(GJJ150490) 江西省交通运输厅科技项目(2014X0015)资助~~
关键词 跨越–侧抑制神经网络 稀疏 小世界网络 智力发展 Span-lateral inhibition neural network(S-LINN) spares small-world network intelligence development
  • 相关文献

参考文献4

二级参考文献35

  • 1吕金虎.复杂动力网络的数学模型与同步准则[J].系统工程理论与实践,2004,24(4):17-22. 被引量:40
  • 2胡寿松,张正道.基于神经网络的非线性时间序列故障预报[J].自动化学报,2007,33(7):744-748. 被引量:16
  • 3WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world' networks[J]. Nature, 1998, 393 (6684): 440- 442. 被引量:1
  • 4BARABASI A L, ALBERT R. Emergence of scaling in random network[J]. Science, 1999,286(5439) : 509-512. 被引量:1
  • 5NEWMAN M E J, WATTS D J. Renormalization group analysis of the small-world network model[J]. Phys Lett A, 1999, 263:341-346. 被引量:1
  • 6NEWMAN M E J. The structure and function of complex networks[J]. SIAM Review, 2003,45 : 167-256. 被引量:1
  • 7BOCCALETTI S, LATORA V, MORENO Y, et al. Complex networks: structure and dynamics[J]. Phys Rep, 2006,424: 175-308. 被引量:1
  • 8WATTS D J. Small worlds: The dynamics of networks between order and randomness[M]. Princeton: Princeton University Press, 1999. 被引量:1
  • 9Kim S, Wang J. Lateral inhibition and concentration- invariant odor perception[J]. J of Biology, 2009, 8(1): 1-3. 被引量:1
  • 10Watts D J, Strogatz S H. Collective dynamics of "small- world" networks[J]. Nature, 1998, 393(6684): 440-442. 被引量:1

共引文献53

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部