期刊文献+

云计算中基于群体智能算法的大数据聚类挖掘 被引量:32

Big Data Clustering Mining Based on Swarm Intelligence Algorithm in Cloud Computing
下载PDF
导出
摘要 为了提高数据挖掘的精度和效率,提出了一种基于群体智能算法的大数据聚类挖掘算法。首先对聚类算法中的模糊C-均值聚类算法进行分析,然后将亚启发式群体智能优化技术中的混合蛙跳算法与模糊C-均值聚类相结合,以便在调整的参数少的条件下优化全局搜索能力。仿真实验结果显示:相比其他聚类挖掘算法,提出的算法能解决局部陷阱问题,具有较好的聚类效果、准确率和收敛速度,同时算法的稳定性较高。 In order to improve the accuracy and efficiency of data mining, a big data clustering mining algorithm based on swarm intelligence algorithm was proposed. Firstly, the fuzzy C -means clustering algorithm in clustering algorithm was analyzed. Then the hybrid leapfrog algorithm in the sub-heuristic group intelligent optimization technology was combined with the fuzzy C -means clustering to optimize the global search ability under the condition that the adjusted parameters were small. The simulation results show that compared with other clustering algorithms, the proposed algorithm can effectively solve the local trap problem, which has better clustering effect, accuracy and convergence speed. At the same time, the stability of the proposed algorithm is higher.
作者 唐新宇 张新政 赵月爱 TANG Xinyu;ZHANG Xinzheng;ZHAO Yueai(Department of Computer Application Technology, Guangdong College of Business and Technology, Zhaoqing 526040,China;School of Automation, Guangdong University of Technology, Guangzhou 510090, China;Department of Computer, Taiyuan Normal University, Jinzhong 030619, China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2019年第4期128-133,167,共7页 Journal of Chongqing University of Technology:Natural Science
基金 广东省教育厅高校特色创新类项目(自然科学)(2017GKTSCX110) 广东省省级科技计划项目(2014A020217016)
关键词 群体智能 大数据 聚类算法 混合蛙跳 模糊聚类 group intelligence big data clustering algorithm hybrid leapfrog
  • 相关文献

参考文献4

二级参考文献81

  • 1胡雅馨,李京,惠伯棣.蓝莓果实中主要营养及花青素成分的研究[J].食品科学,2006,27(10):600-603. 被引量:291
  • 2李冬梅,施海虎.负载平衡调度问题的一般模型研究[J].计算机工程与应用,2007,43(8):121-125. 被引量:15
  • 3吴春霞,宋曼殳,阿不都拉.阿巴斯.小甘菊不同部位总黄酮含量测定及其薄层色谱的初步分析[J].食品科学,2007,28(7):430-433. 被引量:16
  • 4[1]GB/T 5009.5-2003,食品中蛋白质的测定[S].北京:中国标准出版社,2003. 被引量:7
  • 5GANNON D. Head in the clouds [ EB/OL]. [2011-04-05]. http://www. nature. com/uidfinder/10. 1038/449963a. 被引量:1
  • 6ZHENG G. Achieving high performance on extremely large parallel machines: Performance prediction and load balancing [ D]. Illinois: University of Illinois at Urbana Champaign, 2005. 被引量:1
  • 7BRYHNI H, KLOVNING E, KURE O. A comparison of load balancing techniques for scalable Web servers [ J]. IEEE Network, 2000, 14(4) : 58 -64. 被引量:1
  • 8WU RONGTENG, SUN JIZHOU, CHEN JINYAN. Parallel execution time prediction of the multitask parallel programs [ J]. Performance Evaluation, 2008, 65(10): 701-713. 被引量:1
  • 9WANG ZHOUJING, LI K W, WANG WEIZE. An Approach to multiattribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights [J]. Information Science, 2009, 179(17) : 3026 -3040. 被引量:1
  • 10KANZAWA Y, ENDO Y, MIYAMOTO S. Fuzzy C-means algorithms for data with tolerance based on opposite criterions [ J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science, 2007, E90-A(10) : 2194 - 2202. 被引量:1

共引文献174

同被引文献166

引证文献32

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部