摘要
通过测试电路与数字滤波技术,探究了一种电力电子器件关断机械应力波的测量方法;通过信号处理与频谱分析得到了机械应力波的时域和频域特征参数,如幅值、峰峰值、峰值频率和频率范围.研究结果表明:合理设置采样阈值和阻带频率能够测量机械应力波;IKW40T120型IGBT器件在关断40 A电流时,关断机械应力波的幅值为5.2 mV、峰峰值为9.6 mV,时域波形约持续100μs且振幅衰减,其幅值频谱明显存在3个频率段,分别为20~100 k Hz、150~200 kHz和290~310 kHz,每个频率段具有1个峰值频率点,分别为54 kHz、163 kHz和299 kHz,几乎呈现1倍、3倍、5倍频关系,三峰值频率点对应的峰值差异较大,分别为1.24 mV、0.69 mV和0.36 mV.
This paper studied a method for measuring the mechanical stress wave in power electronic device by means of test circuit and digital filtering technology.Time domain and frequency domain characteristic parameters of mechanical stress wave,such as amplitude,peak-to-peak,peak frequency,and frequency range,were obtained through signal processing and spectrum analysis.The research results show that the mechanical stress wave can be measured by setting the sampling threshold and stopping the band frequency reasonably.When a current of 40 A in IKW40 T120 IGBT device is turned off,the mechanical stress wave continues to decay for 100 μs,and its amplitude and peak-to-peak value are 5.2 mV and 9.6 mV,respectively.The amplitude spectrum clearly has three frequency segments that are 20~100 kHz,150~200 kHz and 290~310 kHz.Each frequency segment has one peak frequency point,which is 54 kHz,163 kHz and 299 kHz,respectively,showing almost 1,3 and 5 octave relationship.The peaks corresponding to three peak frequency points differ greatly,which are 1.24 mV,0.69 mV and 0.36 mV,respectively.
作者
李孟川
孟志强
胡毅
王俊
何赟泽
邹翔
焦文豪
欧阳红林
LI Mengehuan;MENG Zhiqiang;HU Yi;WANG Jun;HE Yunze;ZOU Xiang;JIAO Wenhao;OUYANG Honglin(College of Electrical and Information Engineering,Hunan University,Changsha 410082,China;Fujian Province University Key Laboratory of Nondestructive Testing,Fuqing Branchof Fujian Normal University,Fuqing 350300,China)
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2019年第4期74-79,共6页
Journal of Hunan University:Natural Sciences
基金
国家重点研发计划资助项目(2016YFE0123900)
湖南大学青年教师成长计划(531107040974)
湖南大学中青年教师购置小型仪器设备专项(531107040977)~~
关键词
电力电子器件
关断过程
机械应力波
状态监测
可靠性
power electronics device
turn-off process
mechanical stress wave
condition monitoring
reliability