期刊文献+

基于KMSMOTE和随机森林的爬升段油耗分类 被引量:2

FUEL CONSUMPTION CLASSIFICATION IN CLIMBING PHASE BASED ON KMSMOTE AND RANDOM FOREST
下载PDF
导出
摘要 为了解决飞机燃油消耗预测过程中的数据不平衡问题,传统SMOTE方法对少数类随机构造伪样本,从而导致了数据分布的整体变化和模糊了区间边界。针对以上问题,提出一种基于k-medoids的改进SMOTE算法,即KMSMOTE,并以随机森林作为分类器进行爬升段油耗分类。该方法使用k-medoids对少数类进行聚类操作,在聚类簇的基础上使用SMOTE构造伪样本,确保分类结果不会偏向多数类;应用随机森林算法生成分类器。选取国内同一航线、同一机型的多个航班数据为实验样本,实验结果表明,改进后的算法分类效果更好。 In order to solve the problem of data imbalance in the prediction of aircraft fuel consumption, the traditional SMOTE randomly constructs a few pseudo-samples, which leads to the overall change of data distribution and the blurs of the interval boundary. Aiming at the above problems, we proposed an improved SMOTE based on k-medoids, namely KMSMOTE, and random forest was used as classifier to classify the fuel consumption in the climbing phase. In this method, k-medoids was used to cluster a few classes, and SMOTE was applied to construct pseudo-samples on the basis of clustering, so as to ensure that the classification results were not biased towards most classes. We used the random forest to generate the classifier. Multiple flight data of the same airline and the same aircraft type in the domestic were selected as experimental samples. The experimental results show that the improved algorithm has better classification effect.
作者 陈静杰 崔金成 Chen Jingjie;Cui Jincheng(College qf Electronic Information and Automation , Civil Aviation University of China, Tianjin 300300, China)
出处 《计算机应用与软件》 北大核心 2019年第4期247-250,316,共5页 Computer Applications and Software
基金 国家科技支撑计划项目(2012BAC20B0304)
关键词 爬升段 不平衡 k-medoids SMOTE 随机森林 Climbing phase Imbalance k-medoids SMOTE Random forest
  • 相关文献

参考文献9

二级参考文献93

  • 1涂承胜,陆玉昌.Boosting视角[J].计算机科学,2005,32(5):140-143. 被引量:2
  • 2程荣辉,古远兴,黄红超,李美金,黄顺洲.民用航空发动机核心机技术发展研究[J].燃气涡轮试验与研究,2007,20(1):1-7. 被引量:9
  • 3杨平,郑金华.遗传选择算子的比较与研究[J].计算机工程与应用,2007,43(15):59-62. 被引量:46
  • 4Mason L,Baxter J,Bartlett P,et al. Boosting algorithms as gra dient deseent[C] // Neural Information Processing Systems 12 Cambridge: MIT Press, 2000 : 512-518. 被引量:1
  • 5Friedman J, Hastie T, Tibshirani R. Additive logistic regression a statistical view of boosting[J]. The Annals of Statistics, 2000 28(2) : 337-407. 被引量:1
  • 6Seiffert C,Khoshgoftaar T M, Hulse J V, et al. RUSBoost: Im proving classification performance when training data is skewed [C]//Proceedings of 19th International Conference on Pattern Recognition. Washington DC: IEEE Computer Society, 2008:1-4. 被引量:1
  • 7Guo H Y,Viktor H L. Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach[J]. SIGKDD Explorations, 2004,6 ( 1 ):30-39. 被引量:1
  • 8Sun Y,Kamel M S,Wong A K C, et al. Cost-sensitive boosting for classification of imbalanced data[J].Pattern Recognition, 2007,40(12) :3358-3378. 被引量:1
  • 9Li Q J, Mao Y B, Wang Z Q, et al. Cost-sensitive boosting: fit ring an additive asymmetric logistic regression model[C]//Proceedings of the 1st Asian Conference on Machine Learning: Advances in Machine Learning ( ACML ' 09 ). Berlin: Springer, 2009 : 234-247. 被引量:1
  • 10Masnadi-Shirazi H, Vaseoneelos N. Cost-sensitive boosting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,33(2) :294-309. 被引量:1

共引文献99

同被引文献15

引证文献2

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部