摘要
A novel ZnCo_2O_4/Bi_2O_3 heterojunction photocatalyst was prepared, and the formation of the heterojunction was confirmed via HRTEM. Photocatalytic activity of as-prepared samples was evaluated through photodegradation of malachite green(MG). The degradation results show that the as-prepared13% ZnCo_2O_4/Bi_2O_3 heterojunction photocatalyst exhibits higher activity than pure Bi_2O_3. The MG degradation rate for the as-prepared catalyst is as high as 94%. The enhanced photocatalytic activity is mainly attributed to the broad photoabsorption and low recombination rate of photogenerated electronhole pairs, which is driven by the photogene rated potential difference formed at the ZnCo_2O_4/Bi_2O_3 heterojunction interface.
A novel ZnCo_2O_4/Bi_2O_3 heterojunction photocatalyst was prepared, and the formation of the heterojunction was confirmed via HRTEM. Photocatalytic activity of as-prepared samples was evaluated through photodegradation of malachite green(MG). The degradation results show that the as-prepared13% ZnCo_2O_4/Bi_2O_3 heterojunction photocatalyst exhibits higher activity than pure Bi_2O_3. The MG degradation rate for the as-prepared catalyst is as high as 94%. The enhanced photocatalytic activity is mainly attributed to the broad photoabsorption and low recombination rate of photogenerated electronhole pairs, which is driven by the photogene rated potential difference formed at the ZnCo_2O_4/Bi_2O_3 heterojunction interface.
基金
financially supported by Jiana Foundation of Central South University(No.JNJJ201613)
the National Natural Science Foundation of China(No.51404306)