期刊文献+

A competitive microcystin-LR immunosensor based on Au NPs@metal-organic framework(MIL-101) 被引量:2

A competitive microcystin-LR immunosensor based on Au NPs@metal-organic framework(MIL-101)
原文传递
导出
摘要 An electrochemical immunosensor was developed for ultrasensitive detection of microcystin-LR in water. MIL-101, a porous metal-organic frameworks(MOFs) material based on trivalent chromium skeleton were synthesized by hydrothermal synthesis method, and loaded with Au nanoparticles(Au NPs) to prepare Au NPs@MIL-101 composite materials which were used as a marker to label anti microcystin-LR(Anti-MC-LR). The composite materials have strong catalytic properties to the oxidation of ascorbic acid. Anti-MC-LR was immobilized on glassy carbon electrode surface using electrodeposition graphene oxide(GO) as an immobilization matrix to construct a competitive microcystin-LR immunosensor. The electrochemical immunosensor display linear relationship in the range of 0.05 ng/mL-75 μg/mL with linear correlation coefficient of 0.9951 and detection limit of 0.02 ng/mL(S/N = 3). This sensor was used to detect microcystin-LR in the water sample. The recovery was 102.43%,which is satisfied. The good testing results indicate the sensor has a great prospect in practical application. An electrochemical immunosensor was developed for ultrasensitive detection of microcystin-LR in water. MIL-101, a porous metal-organic frameworks(MOFs) material based on trivalent chromium skeleton were synthesized by hydrothermal synthesis method, and loaded with Au nanoparticles(Au NPs) to prepare Au NPs@MIL-101 composite materials which were used as a marker to label anti microcystin-LR(Anti-MC-LR). The composite materials have strong catalytic properties to the oxidation of ascorbic acid. Anti-MC-LR was immobilized on glassy carbon electrode surface using electrodeposition graphene oxide(GO) as an immobilization matrix to construct a competitive microcystin-LR immunosensor. The electrochemical immunosensor display linear relationship in the range of 0.05 ng/mL-75 μg/mL with linear correlation coefficient of 0.9951 and detection limit of 0.02 ng/mL(S/N = 3). This sensor was used to detect microcystin-LR in the water sample. The recovery was 102.43%,which is satisfied. The good testing results indicate the sensor has a great prospect in practical application.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第3期664-667,共4页 中国化学快报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos. 21165023,21465026, 21765026, 21605130) the National Key Scientific Program of China(Nos. 2011CB911000,01100205020503104)
关键词 MICROCYSTIN-LR METAL-ORGANIC frameworks MIL-101 COMPETITIVE ELECTROCHEMICAL IMMUNOSENSOR Microcystin-LR Metal-organic frameworks MIL-101 Competitive Electrochemical immunosensor
  • 相关文献

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部