期刊文献+

Effect of Different Scale Precipitates on Corrosion Behavior of Mg–10Gd–3Y–0.4Zr Alloy

Effect of Different Scale Precipitates on Corrosion Behavior of Mg–10Gd–3Y–0.4Zr Alloy
原文传递
导出
摘要 A large amount of directional and willow-like β' phase was precipitated in Mg-10 Gd-3 Y-0.4 Zr(GW103 K) alloy after solution treatment and subsequently aged treatment(T6). In order to explore the effect of the precipitates on the corrosion behavior of the GW103 K alloy, the alloy was subjected to solution treatment(T4) at 773 K for 4 h at first, subsequently aged at 498 K for 193 h(T6). The microstructure evolution of the GW103 K alloy after this treatment was investigated by scanning electron microscopy and transmission electron microscopy. The high-angle annular detector dark-field scanning transmission electron microscopy was used to observe the typical corrosion morphologies of the nanoscale precipitation phases(β') in the T6-treated alloy. The corrosion rate was measured by potentiodynamic polarization test. Combining with the potential measurement results by scanning Kelvin probe force microscopy, the effects of the skeleton-like Mg_(24)(Gd,Y)_5 andf precipitates on the corrosion behavior of GW103 K alloy were explored. The results showed that the corrosion rate of the GW103 K alloy in different conditions was ranked as: as-cast alloy> T4-treated alloy> T6-treated alloy,attributing to the fact that the relative potential differences of skeleton-like Mg_(24)(Gd,Y)_5 were lower than those of the matrix, therefore Mg24(Gd, Y)5 phase formed micro-galvanic coupling with the matrix and corrosion dissolution occurred.The nanoscale β' precipitates in T6-treated alloy can retard the cathodic process. A large amount of directional and willow-like β' phase was precipitated in Mg-10 Gd-3 Y-0.4 Zr(GW103 K) alloy after solution treatment and subsequently aged treatment(T6). In order to explore the effect of the precipitates on the corrosion behavior of the GW103 K alloy, the alloy was subjected to solution treatment(T4) at 773 K for 4 h at first, subsequently aged at 498 K for 193 h(T6). The microstructure evolution of the GW103 K alloy after this treatment was investigated by scanning electron microscopy and transmission electron microscopy. The high-angle annular detector dark-field scanning transmission electron microscopy was used to observe the typical corrosion morphologies of the nanoscale precipitation phases(β') in the T6-treated alloy. The corrosion rate was measured by potentiodynamic polarization test. Combining with the potential measurement results by scanning Kelvin probe force microscopy, the effects of the skeleton-like Mg_(24)(Gd,Y)_5 andf precipitates on the corrosion behavior of GW103 K alloy were explored. The results showed that the corrosion rate of the GW103 K alloy in different conditions was ranked as: as-cast alloy> T4-treated alloy> T6-treated alloy,attributing to the fact that the relative potential differences of skeleton-like Mg_(24)(Gd,Y)_5 were lower than those of the matrix, therefore Mg24(Gd, Y)5 phase formed micro-galvanic coupling with the matrix and corrosion dissolution occurred.The nanoscale β' precipitates in T6-treated alloy can retard the cathodic process.
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第4期433-442,共10页 金属学报(英文版)
基金 supported financially by the National Natural Science Foundation of China (No. 51531007) the Natural Science Foundation of Inner Mongolia (No. 2016MS0538) the Research Fund of State Key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute (LSMRI) (No. KF160408)
关键词 MAGNESIUM ALLOY Aging PRECIPITATES Corrosion Potential DIFFERENCE Transmission electron microscopy(TEM) Magnesium alloy Aging precipitates Corrosion Potential difference Transmission electron microscopy(TEM)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部