期刊文献+

动态随机树贝叶斯集成回归模型研究 被引量:4

Dynamic Random Tree Bayesian Ensemble Regression Model
下载PDF
导出
摘要 针对目前的动态贝叶斯网络主要用于时间序列的因果分析和分类预测,缺少将动态贝叶斯网络用于回归计算方面研究的情况,结合随机树生成、回归变量的离散化、类变量的数量化、类的满条件概率计算和加权平均回归计算等建立动态随机树贝叶斯回归模型,并通过集成(平均)来提高回归模型的泛化能力,使用期货数据进行实验,实验结果显示,动态随机树贝叶斯集成回归模型具有良好的回归可靠性. At present,the dynamic Bayesian network is mainly used for causality analysis and classification prediction of time series and the research on the dynamic Bayesian networks in regression computing is needed. In this paper,we combine the generation of random tree,the discretization of regression variable,the quantification of class variable,the full conditional probability calculation of a class,weighted mean regression calculation and so on to set up a dynamic random tree Bayesian regression model and improve it’ s generalization ability by model average. We use futures data to carry out experiments. Experimental results show that the dynamic random tree Bayesian ensemble regression model has good regression reliability.
作者 王双成 郑飞 唐晓清 WANG Shuang-cheng;ZHENG Fei;TANG Xiao-qing(School of Information Management,Shanghai Lixin University of Accounting and Finance,Shanghai 201620,China;School of Statistic and Mathematics,Shanghai Lixin University of Accounting and Finance,Shanghai 201620,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2019年第4期715-720,共6页 Journal of Chinese Computer Systems
基金 国家社会科学基金项目(18BTJ020)资助 上海市自然科学基金项目(15ZR1429700)资助
关键词 动态贝叶斯网络 随机树 回归模型 模型平均 回归可靠性标准 dynamic Bayesian network random tree regression model model average regression reliability criterion
  • 相关文献

参考文献6

二级参考文献75

  • 1胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 2王双成,刘喜华,唐海燕.基于依赖分析的马尔科夫网络分类器学习与优化[J].模式识别与人工智能,2006,19(4):485-490. 被引量:1
  • 3杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 4Bengio Y. Markovian models for sequential data. Neural Computing Surveys, 1999, 2:129-162. 被引量:1
  • 5Gu H Y, Tseng C Y, Lee L S. Isolated-utterance speech recognition using hidden Maxkov models with bounded state durations. IEEE Transactions on Signal Processing, 1991, 39(8): 1743-1752. 被引量:1
  • 6Levinson S E. Continuously variable duration hidden Markov models for automatic speech recognition. Computer Speech and Language, 1986, 1(1): 29-45. 被引量:1
  • 7Russell M J, Moore R K. Explicit modeling of state occupancy in hidden Markov models for automatic speech recognition. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Florida, USA: IEEE, 1985. 5-8. 被引量:1
  • 8Duong T V, Bui H H, Phung D Q, Venkatesh S. Activity recognition and abnormality detection with the switching hidden semi-Markov model. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 838-845. 被引量:1
  • 9Murphy K P. Dynamic Bayesian Network: Representation, Inference and Learning [Ph. D. dissertation], University of California, USA, 2002. 被引量:1
  • 10Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5000): 2323-2326. 被引量:1

共引文献44

同被引文献43

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部