期刊文献+

MIMO Underwater Acoustic Communication in Shallow Water with Ice Cover 被引量:1

MIMO Underwater Acoustic Communication in Shallow Water with Ice Cover
下载PDF
导出
摘要 Although multiple-input multiple-output(MIMO) underwater acoustic(UWA) communication has been intensively investigated in the past years, existing works mainly focus on open-water environment. There is no work reporting MIMO acoustic communication in under-ice environment. This paper presents results from a recent MIMO acoustic communication experiment which was conducted in Bohai Gulf during winter. In this experiment, high frequency MIMO signals centered at 10 kHz were transmitted from a two-element source array to a four-element vertical receiving array at 1 km range. According to the received signal of different array elements, MIMO acoustic communication in under-ice environment suffers less effect from co-channel interference compared with that in open-water environment. In this paper, time reversal followed by a single channel decision feedback equalizer is used to process the experimental data. It is demonstrated that this simple receiver is capable of realizing robust performance using fewer hydrophones(i.e. 2) without the explicit use of complex co-channel interference cancelation algorithms, such as parallel interference cancelation or serial interference cancelation. Although multiple-input multiple-output(MIMO) underwater acoustic(UWA) communication has been intensively investigated in the past years, existing works mainly focus on open-water environment. There is no work reporting MIMO acoustic communication in under-ice environment. This paper presents results from a recent MIMO acoustic communication experiment which was conducted in Bohai Gulf during winter. In this experiment, high frequency MIMO signals centered at 10 kHz were transmitted from a two-element source array to a four-element vertical receiving array at 1 km range. According to the received signal of different array elements, MIMO acoustic communication in under-ice environment suffers less effect from co-channel interference compared with that in open-water environment. In this paper, time reversal followed by a single channel decision feedback equalizer is used to process the experimental data. It is demonstrated that this simple receiver is capable of realizing robust performance using fewer hydrophones(i.e. 2) without the explicit use of complex co-channel interference cancelation algorithms, such as parallel interference cancelation or serial interference cancelation.
出处 《China Ocean Engineering》 SCIE EI CSCD 2019年第2期237-244,共8页 中国海洋工程(英文版)
基金 financially supported by the National Natural Science Foundation of China(Grant Nos.61631008,61471137,and 50509059) the Fundamental Research Funds for the Central Universities(Grant No.HEUCFM180503) the Marine Nonprofit Industry Research Subject(Grant No.2013M531015)
关键词 UNDERWATER ACOUSTIC communication MIMO SHALLOW water ICE COVER underwater acoustic communication MIMO shallow water ice cover
  • 相关文献

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部