摘要
设G是有限群,E■G.分别考虑E的Sylowp-子群P(其中p是|E|的极小素因子)、E或F~*(E)的非循环Sylowp-子群P,利用其极大子群的几乎M-可补性质,研究了p-拟超可解群、拟超可解群这两类可解饱和群系的结构,得到了一些充分条件.
Let G be a finite group and E a normal subgroup of G . Some sufficient conditions about p-quasisupersoluble groups and quasisupersoluble groups were obtained by using the nearly M-supplementation of the maximal subgroup of P , in which P was a Sylow p-subgroup of E , where p was the smallest prime divisor of |E| or the non-cyclic Sylow p-subgroup of E or F^*(E), respectively.
作者
高百俊
王克科
GAO Baijun;WANG Keke(School of Mathematics and Statistics, Yili Normal University, Yining 835000, China;School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, China)
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2019年第3期16-19,共4页
Journal of Anhui University(Natural Science Edition)
基金
伊犁师范学院科研重点项目(2016YSZD06)