期刊文献+

大数据背景下高校贫困生精准资助路径探析 被引量:4

On the Paths of Targeted Funding for Poor College Students Based on the Big Data Technology
下载PDF
导出
摘要 高校资助工作在取得巨大成就的同时,也存在资助对象识别不够精准、贫困生认定标准不具有科学性、资助对象没有做到动态调整、资助过程中高校缺乏人文关怀等一系列的问题,这些问题对资助的精准度影响巨大。利用大数据技术构建资助指标体系,建立资助信息动态管理,可以实现资助对象精准化,推进资助行为差异化,强化资助育人的功能。 While making great achievements in university funding, there are also a series of problems, such as inaccurate identification of funding targets, unscientific identification standards for poor students, lack of dynamic adjustment of funding targets, and lack of humanistic care in the funding process, which directly affect the accuracy of funding. It is an important way for colleges and universities to use big data technology to establish a subsidy index system to realize the accurate target of subsidy, promote the differentiation of subsidy behavior, realize the dynamic management of subsidy information and strengthen the function of subsidy education.
作者 程艳 Cheng Yan(Wuxi Institute of Commerce ,Wuxi, Jiangsu, 214153)
出处 《九江职业技术学院学报》 2019年第1期53-54,72,共3页 Journal of Jiujiang Vocational and Technical College
基金 无锡商业职业技术学院2018年度科研与教改课题"大数据背景下高校贫困生资助工作精准化研究"(课题批准号:KJXJ18426)
关键词 大数据 精准资助 贫困生 big data targeted funding the poor students
  • 相关文献

参考文献4

二级参考文献22

共引文献249

同被引文献12

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部