摘要
该文考虑了一类具有偏差变元的奇性P-Laplacian Lienard型方程(φ_p(x'(t))'+f(x(t))x'(t)+g(t, x(t-σ(t)))=e(t)其中g(x)在原点处具有吸引奇性.通过应用Manasevich-Mawhin连续定理和一些分析方法,证明了这个方程周期解的存在性.
In this paper, we consider a kind of pp-Laplacian singular Liénard equation with time-dependent deviating argument (φp(x′(t)))′+f(x(t))x′(t)+g(t,x(t-σ(t)))=e(t), where gg has a attractive singularity at x=0. By applications of Manásevich-Mawhin continuation theorem and some analysis skills, sufficient conditions for the existence of periodic solution is established.
作者
程志波
毕中华
姚绍文
Zhibo Cheng;Zhonghua Bi;Shaowen Yao(School of Mathematics and Information Science, Henan Polytechnic University, Henan Jiaozuo 454003;Department of Mathematics, Sichuan University, Chengdu 610064)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2019年第2期277-285,共9页
Acta Mathematica Scientia
基金
国家自然科学基金(11501170
71601072)
中国博士后基金(2016M590886)
河南省高校基本科研业务费专项资金(NSFRF170302)
河南理工大学博士基金(B2013-055)~~