期刊文献+

超密集网络中基于移动边缘计算的任务卸载和资源优化 被引量:42

Computing Offloading and Resource Optimization in Ultra-dense Networks with Mobile Edge Computation
下载PDF
导出
摘要 移动边缘计算(MEC)通过在无线网络边缘为用户提供计算能力,来提高用户的体验质量。然而,MEC的计算卸载仍面临着许多问题。该文针对超密集组网(UDN)的MEC场景下的计算卸载,考虑系统总能耗,提出卸载决策和资源分配的联合优化问题。首先采用坐标下降法制定了卸载决定的优化方案。同时,在满足用户时延约束下采用基于改进的匈牙利算法和贪婪算法来进行子信道分配。然后,将能耗最小化问题转化为功率最小化问题,并将其转化为一个凸优化问题得到用户最优的发送功率。仿真结果表明,所提出的卸载方案可以在满足用户不同时延的要求下最小化系统能耗,有效地提升了系统性能。 Mobile Edge Computing (MEC) improves the quality of users experience by providing users with computing capabilities at the edge of the wireless network.However,computing offloading in MEC still faces some problems.In this paper,a joint optimization problem of offloading decision and resource allocation is proposed for the computation offloading problem in Ultra-Dense Networks (UDN) with MEC.To solve this problem,firstly,the coordinate descent method is used to formulate the optimization scheme for the offloading decision.Meanwhile,the improved Hungarian algorithm and greedy algorithm are used to allocate the channels to meet the user’s delay requirements.Finally,the problem of minimizing energy consumption is converted into a problem of minimizing power.Then it is converted into a convex optimization problem to get the user’s optimal transmission power.Simulation results show that the proposed scheme can minimize the energy consumption of the system while satisfying the users’ different delay requirements,and improve effectively the performance of the system.
作者 张海波 李虎 陈善学 贺晓帆 ZHANG Haibo;LI Hu;CHEN Shanxue;HE Xiaofan(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;Department of Electronic Engineering,Lamar University,TX 77710,USA)
出处 《电子与信息学报》 EI CSCD 北大核心 2019年第5期1194-1201,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61771084 61601071) 长江学者和创新团队发展计划基金(IRT16R72) 重庆市基础研究与前沿探索项目(cstc2018jcyjAX0463)~~
关键词 超密集组网 移动边缘计算 计算卸载 资源分配 Ultra-Dense Networks (UDN) Mobile Edge Computing (MEC) Computing offloading Resource allocation
  • 相关文献

同被引文献177

引证文献42

二级引证文献183

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部