摘要
合金界面材料凭借优异的接触热阻消除率被广泛应用于电子工业,用以提高材料接触面之间的热传导性能.文中通过在Bi-In-Sn三元合金中添加微量膨胀金属粒子Sb并于700℃下在管式炉中熔融,制备了一种新的Bi-In-Sn-Sb四元合金.该合金有较低的熔点(约61℃)、较高的导热系数(约23.8 W/(m·K))和极低的接触热阻(约12.3 mm^2·K/W),其对陶瓷基板间界面热阻的消除率可达95.9%,能够极大促进基板之间的热传导.分析其原因,在于Bi-In-Sn-Sb四元合金在相变后体积膨胀率高达88.6%(80℃时),能够有效减少界面之间的空气带隙残留量,改善接触面质量.因此,这种相变膨胀Bi-In-Sn-Sb四元合金最可能成为高性能热界面材料的候选者.
Alloy interface materials with excellent thermal contact resistance elimination rate are widely used in electronics industry to improve the thermal conductivity between material contact surfaces. In this paper, a novel Bi-In-Sn-Sb quaternary alloy was fabricated by adding a small amount of expandable metal Sb to Bi-In-Sn ternary alloy and smelting it in a tube furnace at 700 ℃. This alloy has a low melting point(about 61 ℃), high thermal conductivity(about 23.8 W/(m·K)) and extremely low thermal contact resistance(about 12.3 mm^2·K/W), and the eliminating efficiency of thermal resistance between ceramic substrates is up to 95.9%, which can greatly improve the heat transfer performance between the substrates. All these are because that the volumetric expansion rate of Bi-In-Sn-Sb quaternary alloy is as high as 88.6% after a phase change at 80 ℃, which can effectively reduce the residue of air gap between interfaces and improve the quality of contact surfaces. Therefore, the expandable phase-change Bi-In-Sn-Sb quaternary alloy most likely becomes a good candidate of high-performance thermal interface materials.
作者
李静
陈旭阳
雷汝白
张定
樊春雷
LI Jing;CHEN Xuyang;LEI Rubai;ZHANG Ding;FAN Chunlei(School of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China;SCUT-Zhuhai Institute of Modern Industrial Innovation,Zhuhai 519175,Guangdong,China)
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2018年第11期39-46,共8页
Journal of South China University of Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(51476193
51176053)
国防部科技工业局"十三五"民用航天技术预研项目(501-01-2018-0167
A2180150)~~
关键词
界面材料
Bi-In-Sn-Sb四元合金
相变
接触热阻
膨胀率
interface materials
Bi-In-Sn-Sb quaternary alloy
phase change
thermal contact resistance
expansion rate