期刊文献+

Visible light positioning: moving from 2D planes to 3D spaces [Invited] 被引量:2

Visible light positioning: moving from 2D planes to 3D spaces [Invited]
原文传递
导出
摘要 The global navigation satellite system(GNSS) is a well-established outdoor positioning system with industry-wide impact due to the multifaceted applications of navigation, tracking, and automation. At large, however, is the indoor equivalent. One hierarchy of solutions, visible light positioning(VLP) with its promise of centimeter-scale accuracy and widespread coverage indoors, has emerged as a viable, easy to configure, and inexpensive candidate. We investigate how the state-of-the-art VLP systems fare against two hard barriers in indoor positioning: the need for high accuracy and the need to position in the threedimensions(3D). We find that although most schemes claim centimeter-level accuracy for some proposed space or plane, those accuracies do not translate into a realistic 3D space due to diminishing field-of-view in 3D and assumptions made on the operating space. We do find two favorable solutions in ray–surface positioning and gain differentials. Both schemes show good positioning errors, low-cost potential, and single-luminaire positioning functionality. The global navigation satellite system(GNSS) is a well-established outdoor positioning system with industry-wide impact due to the multifaceted applications of navigation, tracking, and automation. At large, however, is the indoor equivalent. One hierarchy of solutions, visible light positioning(VLP) with its promise of centimeter-scale accuracy and widespread coverage indoors, has emerged as a viable, easy to configure, and inexpensive candidate. We investigate how the state-of-the-art VLP systems fare against two hard barriers in indoor positioning: the need for high accuracy and the need to position in the threedimensions(3D). We find that although most schemes claim centimeter-level accuracy for some proposed space or plane, those accuracies do not translate into a realistic 3D space due to diminishing field-of-view in 3D and assumptions made on the operating space. We do find two favorable solutions in ray–surface positioning and gain differentials. Both schemes show good positioning errors, low-cost potential, and single-luminaire positioning functionality.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2019年第3期27-35,共9页 中国光学快报(英文版)
基金 supported in part by the Engineering Research Centers Program of the National Science Foundation under NSF Cooperative Agreement No.EEC-0812056
  • 相关文献

同被引文献17

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部