摘要
通过求解由轨道空间上的Poisson随机测度驱动的随机积分方程,对于满足Yamada-Watanabe型条件的移民速度函数,本文给出了带相依移民连续状态分枝过程的构造.此构造改进了Dawson和Li (2003)、Fu和Li (2004)和Li (2011)等在Lipschitz条件下的结果.
By solving a stochastic integral equation driven by Poisson random measures on a path space,we construct a continuous-state branching process with dependent immigration under a Yamada-Watanabe type condition for the immigration rate functions.This construction improves the results under Lipschitz conditions obtained by Dawson and Li(2003),Fu and Li(2004),Li(2011)and others.
作者
李增沪
张卫
Zenghu Li;Wei Zhang
出处
《中国科学:数学》
CSCD
北大核心
2019年第3期415-432,共18页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11531001和11626245)资助项目