期刊文献+

微博谣言识别与预警算法研究 被引量:14

Micro-blog Gossip Recognition and Early Warning Algorithm Research Based on Complex Networks
下载PDF
导出
摘要 [目的/意义]针对前人成果普遍存在的处理效率与识别准确度等方面的问题,提出了基于复杂网络理论的微博谣言识别与预警算法。[方法/过程]该算法在第一阶段基于复杂网络理论,以动态节点管理为基础,对微博节点实施行为刻画,实现谣言恶意散布节点的早期告警与预测;在第二阶段以复杂网络关系发展理论为基础,将谣言与真实信息进行信息轨迹聚类与隔离,最终实现谣言侦测与识别。'[结果/结论]基于新浪与腾讯微博作为数据源的实验证明,该算法较之既往算法,不但谣言覆盖度与识别准确率高,而且响应速度快、处理效率高,具有良好的性价比。 [Purpose/Significance]Based on the common processing efficiency and recognition accuracy of predecessors’ results, a microblog rumor recognition and early warning algorithm based on complex network theory is proposed. [Method/Process]Based on the complex network theory in the first stage, the algorithm is based on dynamic node management, and describes the behavior of microblog nodes to realize the early warning and prediction of rumor malicious distribution nodes. In the second stage, based on the theory of complex network relationship development, the trajectory is clustered and isolated from the trajectory of the rumor and the real information, and finally the rumor detection and recognition is realized.[Results/Conclusion]Experiment results based on Sina and Tencent micro-blog as data sources show that compared with the previous algorithm, this algorithm not only has high accuracy in coverage and recognition of gossip, but also has fast response speed, high processing efficiency and good cost performance.
作者 王征 叶长安 Wang Zheng;Ye Changan(Economic Information Engineering Southwestern University of Finance and Economics,Chengdu 611130;Marxism School,Southwestern University of Finance and Economics,Chengdu 611130)
出处 《情报杂志》 CSSCI 北大核心 2019年第4期148-154,共7页 Journal of Intelligence
基金 中央高校基本科研业务费项目"基于群体自动叙事的互联网金融市场情绪预测模型研究"(编号:JBK1903006) 中央高校教育教学改革专项-研究生教育教学改革项目"互联网舆情管理与分析"(编号:JYJ20180204)成果之一
关键词 舆情监测 谣言识别 两阶段法 行为识别 复杂网络 早期预警 public opinion gossip recognition two-stage method behavior recognition complex network early warning
  • 相关文献

参考文献3

二级参考文献49

  • 1潘灶烽,汪小帆,李翔.可变聚类系数无标度网络上的谣言传播仿真研究[J].系统仿真学报,2006,18(8):2346-2348. 被引量:86
  • 2张雷.论网络政治谣言及其社会控制[J].政治学研究,2007(2):52-59. 被引量:102
  • 3胡钰.大众传播效果[M].北京:新华出版社,2000. 被引量:15
  • 4蒋启源,谢金星,叶俊.数学模型[M].北京:高等教育出版社,2011:140-145. 被引量:6
  • 5中国互联网络信息中心.第33次中国互联网络发展状况统计报告[R/OL].(2014-03-05)[2014-04-18].http://www.cnnic.net.cn/htwfzyj/hlwxzbg/hlwtjbg/201403/t20140305-46240.htm. 被引量:10
  • 6Blei D M, Lafferty J D. Dynamic topic models[C]//Proceedings of the 23rd International Conference on Machine Learning. Pittsburgh: ACM Press, 2006: 113-120. 被引量:1
  • 7Stewart A, Chen Ling, Paiu R, et al. Discovering information diffusion paths from blogosphere for online advertising[C]//Proceedings of the 1st International Workshop on Data Mining and Audience Intelligence for Advertising. San Jose: ACM Press, 2007:46-53. 被引量:1
  • 8Galam S. Modeling rumors:The no plane Pentagon French hoax case[J].Physica A:Statistical Mechanics and Its Applications, 2003, 320:571-580. 被引量:1
  • 9Zanette D H. Dynamics of rumor propagation on small-world networks [J]. Physical Review E (1539-3755), 2002, 65: 041908-041917. 被引量:1
  • 10Moreno Y, Nekovee M, Pacheco A F. Dynamics of rumor spreading in complex networks [J].Physical Review E(S1539-3755),2004,69:166130-166137. 被引量:1

共引文献73

同被引文献248

引证文献14

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部