期刊文献+

一类具有饱和CTL免疫反应的乙肝病毒模型的全局稳定性分析

Global Stability Analysis of an HBV Infection Model with Saturated CTL Immune Response
下载PDF
导出
摘要 为了研究非线性饱和发生率和饱和CTL免疫反应对乙肝病毒感染过程的影响,建立了一类具有饱和CTL免疫反应的乙肝病毒模型,并分析了该模型各平衡点的局部稳定性,通过构造恰当的Lyapunov函数建立了模型的全局稳定性.结果揭示该模型的动力学行为完全由其基本再生数和免疫反应再生数决定,即该模型为一个阈值动力系统. In order to study the effects of saturated incidence rate and saturated CTL response on the HBV infection,we develop an HBV infection model with saturated CTL response.The local stability of all equilibria of the model proposed are analyzed,and the global stability of the model is also explored via constructing proper Lyapunov functions.It is concluded that its dynamical properties are fully determined by the the basic reproduction number and the immune response reproduction number,namely,this model preserves the threshold dynamics.
作者 蒋玉婷 王连文 JIANG Yuting;WANG Lianwen(School of Science,Hubei Minzu University,Enshi 445000,China;School of Mathematics,Southwest Jiaotong University,Chengdu 611756,China)
出处 《湖北民族学院学报(自然科学版)》 CAS 2019年第1期64-69,共6页 Journal of Hubei Minzu University(Natural Science Edition)
基金 湖北省教育厅科技研究计划青年人才项目(Q20171904) 湖北民族学院大学生创新创业训练计划项目(2017CX05)
关键词 乙肝病毒模型 饱和CTL免疫反应 全局稳定性 LYAPUNOV函数 HBV infection model saturated CTL response global stability Lyapunov function
  • 相关文献

参考文献1

二级参考文献7

  • 1WANG L, LI M Y, Kirschner D. 2002, 179: 207-217. Mathematical analysis of the global dynamics of a model for HTLV-I infection and ATL Droeression[J]. Math Biosci, 179: 207-217. 被引量:1
  • 2WANG L, LI M Y. 2006. Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells[J]. Math Biosci, 2006: 44-57. 被引量:1
  • 3CULSHAW R V, RUAN S G. A delay-differential equation model of HIV infection of CD4+ T-cells[J]. Math. Biosci, 2000, 175: 27-39. 被引量:1
  • 4NELSON P W Perelson A S. 2002. Mathematical analysis of delay differential equation models of HIV-1 infection[J]. Math. Biosci, 2002, 179: 73-94. 被引量:1
  • 5WANG Y, ZHOU Y, WU J, et al. Oscillatory viral dynamics in a delayed HIV pathogenesis model[J]. Math Biosci, 2009, 219: 104-112. 被引量:1
  • 6MICHAEL Y LI, HONGYING SHU. Global Dynamics of an In-host Viral Model with Intracellular Delay[J]. Bulletin of Mathematical Biology, 2010, 72: 1492-1505. 被引量:1
  • 7HERZ V, BONHOEFFER S, ANDERSON R, et al. Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay[C1. USA: Proc Natl Acad Sci. 1993. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部