摘要
电气线路的压接连接质量会对线路的长期运行安全产生较大的影响。采用热循环及短路试验对铝制接续金具和铝合金接续金具压接下的铝合金电缆导体线路的运行情况进行了分析。结果表明:在热循环试验条件下,铝制接续金具与铝合金接续金具的压接性能差异不大,但短路试验后,铝合金接续金具的压接性能明显优于铝制金具的;短路试验所产生的温差导致的接续金具内部应力(110 MPa)明显高于热循环试验所产生的应力(35 MPa);Al-0.6Fe-0.15Cu铝合金接续金具,基体中Al_3Fe相粒子可极大地阻碍位错的运动,增加蠕变变形抗力,提高材料应对热循环特别是短路时所产生的高温大应力下蠕变变形的能力。
The quality of compressive connection of electrical circuit has a great influence on the long running safety of the line. The connection of aluminum alloy cable conductor with aluminum and aluminum alloy connection hardware was analyzed by thermal cycling and short circuit test. The results show that there is little difference in the compression performance between aluminum and aluminum alloy connection hardware under the condition of thermal cycling test. However, after the short circuit test, the compression performance of aluminum alloy is better than that of aluminum. The internal stress (110 MPa) caused by temperature difference in short circuit test is significantly higher than the stress generated by the thermal cycling test (35 MPa), the short circuit test is more stringent in the examination of material performance. The Al3Fe phase particles in the matrix of Al-0.6Fe-0.15Cu alloy can greatly hinder the dislocation movement, and increase creep deformation resistance. The ability to deal with creep deformation of Al-0.6Fe-0.15Cu alloy under high temperature and big stress caused by thermal cycling and especially short circuit is improved.
作者
陈冠
杨荣凯
唐建国
陈华
张冰
孔维权
CHEN Guan;YANG Rong-kai;TANG Jian-guo;CHEN Hua;ZHANG Bing;KONG Wei-quan(State Grid Electric Power Research Institute,Nari Group Corporation,Nanjing 211000,China;School of Materials Science and Engineering,Central South University,Changsha 410083,China;College of Materials Science and Engineering,Chongqing University,Chongqing 400081,China)
出处
《中国有色金属学报》
EI
CAS
CSCD
北大核心
2019年第3期484-490,共7页
The Chinese Journal of Nonferrous Metals
基金
国家电网公司总部科技项目(524606160239)
国家自然科学基金资助项目(51474240)~~
关键词
AL-FE合金
热循环
连接性能
蠕变
微观组织
Al-Fe alloy
thermal cycling
connection performance
creep
microstructure