摘要
主要研究随机植物-食草动物模型的长期性行为.首先,利用指数鞅不等式、遍历理论和马尔科夫性等理论,证明随机植物-食草动物模型存在唯一的不变概率测度,从而给出共存性条件;其次,通过运用强大数定律、非常返性和Portmanteau定理等理论,给出随机植物-食草动物模型排斥性的条件,且证明模型正解分布的收敛性.
This paper focuses on the long-term behavior of a stochastic plant-herbivore model. First, by using the theory of exponential martingale inequality, ergodicity and Markovian property, it is proved that there exists a unique invariant probability measure of the stochastic plant-herbivore model, and the coexistence condition is given;followed by the use of strong law of large numbers, not recurrent and Portmanteau theorem, the conditions of stochastic plant-herbivore model rejection are given, and the convergence of the positive solution distribution is proved.
作者
张卿卿
黄在堂
林怡
张绿
陆桂菊
ZHANG Qingqing;HUANG Zaitang;LIN Yi;ZHANG Lü;LU Guiju(School of Mathematics and Statistics,Nanning Normal University,Nanning 530023,Guangxi)
出处
《四川师范大学学报(自然科学版)》
CAS
北大核心
2019年第3期342-353,共12页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(41665006、11561009)
广西自然科学基金(2016GXNSFAA380240)