期刊文献+

一种融合历史均值与提升树的客流量预测模型 被引量:2

A Passenger Flow Predication Model Combining History Means and Boosting Tree
下载PDF
导出
摘要 移动定位服务的发展使得互联网商家"线上线下"的交易数据急剧增长,如何挖掘出海量交易数据中隐藏的用户行为、实现智能化决策是互联网商家在运营过程中面临的一个重要问题。基于此,提出了一种融合历史均值与提升树的互联网商家客流量预测模型,其中提升树用于改进模型的预测精度,历史均值模型用于考虑客流量预测与时间的依赖关系。历史均值与提升树融合的核心思想是先通过提升树XGBoost、GBDT和历史均值模型预测商家过去三周的平均销量和总销量,然后,构建提升树模型与历史均值模型的融合权重系数公式。在包含2 000个互联网商家销售数据集上实现了该方法,并将其与时间序列加权回归模型进行了对比,发现两种方法的预测结果相似,这表明该方法考虑时间因素是正确合理的;并且在训练集增大的情况下,模型的预测精度能得到显著改善。 The development of mobile positioning service makes the online and offline transaction data of Internet merchants grow rapidly.How to dig out the hidden user behaviors in the massive transaction data and realize the intelligent decision- making is a critical problem that Internet merchants are facing in the process of operation.Based on this,we propose an Internet merchant traffic prediction model integrating historical mean and boosting tree,in which the boosting tree is used to improve the prediction accuracy,and the historical mean model is used to consider the dependence between passenger flow prediction and time.The core idea of the proposed model is to predict the average sales and total sales of merchants in the past three weeks by XGBoost,GBDT and historical mean model,and then build the fusion weight coefficient formula of the boosting tree and historical mean model.This method is implemented on the sales data set of 2 000 Internet merchants,and compared with the weighted regression model of time series.It is found that the results of the two methods are similar,which indicates that the proposed method is correct to consider the time factor.Moreover,with the increase of training set,the prediction accuracy of the model can be significantly improved.
作者 白智远 温从威 杨锦浩 陈智 吕品 BAI Zhi-yuan;WEN Cong-wei;YANG Jin-hao;CHEN Zhi;LYU Pin(School of Electronics and Information,Shanghai Dianji University,Shanghai 201306,China)
出处 《计算机技术与发展》 2019年第4期212-215,共4页 Computer Technology and Development
基金 2017年上海市大学生科创项目(A1-5701-17-009-02-54) 上海市教育科学研究项目(C17014/17AR04)
关键词 历史均值 提升树 时间序列加权回归 互联网商家 客流量 history mean boosting tree time series weighting regression Internet business passenger flow
  • 相关文献

参考文献8

二级参考文献31

  • 1邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:147
  • 2王涛,李舟军,胡小华,颜跃进,陈火旺.一种高效的数据流挖掘增量模糊决策树分类算法[J].计算机学报,2007,30(8):1244-1250. 被引量:18
  • 3HanJiawei MichelineKamber 范明 孟小峰译.数据挖掘概念和技术[M].北京:机械工业出版社,2001.. 被引量:12
  • 4郭军.智能化网络管理[Z].http://www.pris.net.cn/lesson/wgwk/chapter11.htm#1,2003. 被引量:1
  • 5朱建秋.一个基于关联规则的数据采掘工具的设计和实现[Z].http://www.dmgroup.org.cn/lw3.htm,2004. 被引量:1
  • 6中国互联网络信息中心.第33次中国互联网络发展状况统计报告[EB/OL].2014-03-05.[2014-07-17]http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201403/t20140305 _46240.htm. 被引量:20
  • 7A Borchers, J Herlocker, J Konstan, et al. Ganging up on information overload[J]. Computer, 1998, 31 (4) : 106-108. 被引量:1
  • 8Tmall Recommendation Prize 2014 & TianChi Open Data Project[Z]. 被引量:1
  • 9Resinick P, Varian H R.Recommender systems[J].Communications oftheACM, 1997, 40 (3) : 56-58. 被引量:1
  • 10Sarwar, B, Karypis, G, Konstan, J, et al. Item-based Collaborative Filtering Recommendation Algorithms[Z].In Proceedings of the Tenth International World Wide Web Conference on World Wide Web, 2001. 被引量:1

共引文献127

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部