摘要
The aim of this study is to present a constitutive model for prediction of the mechanical behavior of fiberreinforced cemented sand. For this purpose, a generalized plasticity constitutive model of sandy soil is selected and the parameters of the model are determined for three types of sandy soils using the results of triaxial tests. Next, the proposed model is developed using the existing models based on the physicomechanical characteristics of fiber-reinforced cemented sand. The elastic parameters, flow rule and hardening law of the base model are modified for fiber-reinforced cemented sand. To verify the proposed model, the predicted results are compared with those of triaxial tests performed on fiber-reinforced cemented sand. Finally, the efficiency of the proposed model is studied at different confining pressures, and cement and fiber contents.
The aim of this study is to present a constitutive model for prediction of the mechanical behavior of fiberreinforced cemented sand. For this purpose, a generalized plasticity constitutive model of sandy soil is selected and the parameters of the model are determined for three types of sandy soils using the results of triaxial tests. Next, the proposed model is developed using the existing models based on the physicomechanical characteristics of fiber-reinforced cemented sand. The elastic parameters, flow rule and hardening law of the base model are modified for fiber-reinforced cemented sand. To verify the proposed model, the predicted results are compared with those of triaxial tests performed on fiber-reinforced cemented sand. Finally, the efficiency of the proposed model is studied at different confining pressures, and cement and fiber contents.