期刊文献+

剩余交换律与剩余交半格及其相关性质

The Residuated Commutative Law and the Residuated Meet Semi-lattice and Its Relative Properties
原文传递
导出
摘要 首先,给出了剩余交半格的概念,通过对其性质的研究,证明了剩余交半格中的所有正则元构成的集合是交半格,并举例说明了剩余交半格中的所有正则元构成的集合不是剩余交半格;其次,证明了满足剩余交换律:x?(x→y)=y?(y→x)的正则剩余交半格是Wajsberg代数;最后,由剩余交换律:x?(x→y)=y?(y→x)得出了L是满足剩余交换律的MTL代数当且仅当L是BL代数。 Firstly, the definition of residuated meet semi-lattice is given. Through the further study of its properties, it is proved that the set of all regular elements in the residuated meet semi-lattice is meet semi-lattice, and an example is given to illustrate the set of all regular elements in the residuated meet semi-lattice is not its substructure. Secondly, it is proved that the regular residuated meet semilattice which satisfies residuated commutative law:■(x→y)=y■(g)(y→x) is Wajsberg algebra. Finally, by the residuated commutative law:■(x→y)=y■(y→x), we obtain that L is a BL algebra, if and only if L is MTL algebra satisfying residuated commutative law.
作者 李娇娇 吴洪博 LI Jiao-jiao;WU Hong-bo(College of Mathematics and Information Science,Shaanxi Normal University,Xi'an 710062,China)
出处 《模糊系统与数学》 北大核心 2019年第1期66-72,共7页 Fuzzy Systems and Mathematics
基金 国家自然科学基金资助项目(61572016 11531009 61673250)
关键词 逻辑代数 剩余交半格 剩余交换律 Wajsberg代数 MTL代数 Logic Algebra Residuated Meet Semi-lattice Residuated Commutative Law Wajsberg Algebra MTL Algebra
  • 相关文献

参考文献12

二级参考文献61

共引文献528

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部