期刊文献+

基于数据挖掘与改进安时积分的SOC估算 被引量:2

SOC estimation on basis of data mining and improved ampere-hour counting method
下载PDF
导出
摘要 提出改进安时积分法对电池荷电状态(SOC)进行在线估算。采用数据挖掘的方法对电池参数进行数据处理,以保证电池采样参数的精确性与标准化。鉴于电池电流倍率、工作温度及老化因子对电池容量的影响,对传统安时积分法进行修正,保证算法的精确性与可行性。基于数据挖掘丝技术的SOC估算算法提高了估算的精度,不同温度下基于联邦城市运行工况(FUDS)循环的SOC估算值与实测值的最大误差仅1.6%。 The improved ampere-hour (Ah) counting method was introduced for on-line state of charge (SOC) estimation. Data mining for battery parameters process was proposed to ensure the precision and nonnalization of the sampled data. Based on charge/ discharge current, battery temperature and state of health (SOH) of battery, the traditional Ah integral method was modified to ensure the accuracy and feasibility of the algorithm. The accuracy of estimation was improved based on data mining of SOC estimation algorithm. The maximal error of estimated SOC and measured SOC on different temperatures and federal urban driving schedule (FUDS) cycles was just 1.6%.
作者 王林 陆珂伟 张树梅 WANG Lin;LU Ke-wei;ZHANG Shu-mei(Shanghai E-propulsion Automotive Technology Co.,Ltd.,Shanghai 201800,China)
出处 《电池》 CAS CSCD 北大核心 2019年第1期55-59,共5页 Battery Bimonthly
关键词 在线荷电状态(SOC)估算 改进安时积分法 电池管理系统 数据挖掘技术 on-line state of charge (SOC) estimation improved ampere-hour counting method battery management system data mining technology
  • 相关文献

参考文献6

二级参考文献37

共引文献52

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部