期刊文献+

融合局部纹理特征的核密度估计运动目标检测 被引量:6

Moving target detection based on KDE combining local texture feature
原文传递
导出
摘要 针对运动目标检测中光照变化、移动阴影问题,提出一种基于多维特征的核密度估计运动目标检测方法。提出一种改进的局部纹理特征二值模式,对噪声和灰度尺度变化具有更好的鲁棒性,在背景建模中将该纹理特征与颜色特征融合进行概率核密度估计,并结合像素的邻域相关性抑制虚假前景以更好地应对多模态背景场景。实验结果表明:在基于纹理特征或核密度估计的同一体系算法中,本文方法对光线渐变以及运动柔性阴影都有较好的鲁棒性,综合性能指标提高了18%;与目前性能优越的算法纵向比较,能在平均检测性能相当的情况下提高50%的处理速度,更好地平衡检测效果与时间性能。 To solve the problems of illumination change and moving shadow in video moving target detection,a new Kernel Density Estimation(KDE)method is proposed based on multi-dimension characteristics.An improved local texture feature binary pattern is put forward which is robust to noise and variant gray scale.In background modeling,the local texture feature and color feature are fused for KDE,and the neighborhood correlation is integrated to suppress false foreground.Experimental results show that the proposed method has good robustness to slow illumination change and soft project shadows and enhances F_measure by 18% comparing to the same system algorithms based on local texture feature or KDE model.Comparing to existing state-of-the-art methods,the proposed method can enhance processing speed by 50% while maintaining the same detection result.The method has comprehensive performance,which balances detection effect and time cost.
作者 金静 党建武 翟凤文 王阳萍 申东 张振海 JIN Jing;DANG Jian-wu;ZHAI Feng-wen;WXNG Yang-ping;SHEN Dong;ZHANG Zhen hai(School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China;Gansu Provincial Engineering Research Center for Artificial Intelligence and Gruphics & Image Processing,Gansu Computing Center,Lanzhou 730070, China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2019年第2期647-655,共9页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61562057) 甘肃省高等学校科研项目(2017D-08) 甘肃省科技计划项目(17JR5RA097) 兰州市人才创新创业项目(2015-RC-8) 兰州交通大学校青年基金项目(2015003)
关键词 信息处理技术 运动目标检测 核密度估计 局部纹理特征 邻域相关性 information processing technology moving targets detection kernel density estimation local texture feature neighborhood correlation
  • 相关文献

参考文献8

二级参考文献170

  • 1陈俊超,张俊豪,刘诗佳,陆小锋.基于背景建模与帧间差分的目标检测改进算法[J].计算机工程,2011,37(S1):171-173. 被引量:23
  • 2崔智高,李艾华,冯国彦.采用多组单应约束和马尔可夫随机场的运动目标检测算法[J].计算机辅助设计与图形学学报,2015,27(4):621-632. 被引量:6
  • 3侯忠生.无模型自适应控制的现状与展望[J].控制理论与应用,2006,23(4):586-592. 被引量:123
  • 4李庆,刘上乾,王炳健,赖睿.基于神经网络的IRFPA非均匀性校正新算法[J].红外与激光工程,2007,36(3):342-344. 被引量:11
  • 5孙继平,陈伟,王福增,唐亮,马凤英,李郴.矿井监控图像中空列车的识别[J].中国矿业大学学报,2007,36(5):597-602. 被引量:7
  • 6Ojala T, Pietikinen M, Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimi- nation of distributions [ C ] // Proceedings of the 12th Interna- tional IAPR Conference on Pattern Recognition. Jerusalem, Pal- estine: IEEE Computer Society, 1994, 1:582-585. 被引量:1
  • 7Pietikinen M, Ojala T, Nisula J, et al. Experiments with two in- dustrial problems using texture classification based on feature dis- tributions [ C ] //Proceedings of SPIE 2354, Intelligent Robots and Computer Vision XIII: 3D Vision, Product Inspection, and Active Vision. Boston, MA: IEEE Computer Society, 1994-, 2354 : 197-204. 被引量:1
  • 8Ojala T, Pietikinen M, Menp T. Multiresolution gray scale and rotation invariant texture classification with local binary patterns [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24 (7) : 971-987. 被引量:1
  • 9Ojala T, Pietikinen M, Menp T. Gray scale and rotation invari- ant texture classification with local binary patterns [ C ] // Pro- ceedings of IEEE European Conference on Computer Vision, Lecture Notes in Computer Science. Berlin Heidelberg: Spring- er, 2000, 1842: 404-420. 被引量:1
  • 10Pietikinen M, Nurmela T, Menp T, .et al. View-based recogni- tion of real-world textures [ J ]. Pattern Recognition, 2004, 37(2) : 313-323. 被引量:1

共引文献170

同被引文献48

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部