期刊文献+

电力大数据的价值密度评价及结合改进k-means的提升方法研究 被引量:20

Evaluation and Promotion Methods with Improved k-means for Value Density of Electric Power Big Data
下载PDF
导出
摘要 针对目前电力大数据价值密度的研究存在缺乏定义和量化指标、提升手段单一导致效果有限的问题,提出了相关定义及评价指标,从空间上内存占用、时间上运行速率2个维度计算价值密度评价指标;并提出了基于多初始聚类中心的改进k-means算法,弥补其太过依赖于初始聚类中心的不足。结合该算法,分别从"脏数据"、记录、字段等不同维度,研究如何提升价值密度。以日负荷预测为算例进行仿真测试,结果表明评价指标能较好地反映价值密度,改进聚类算法有较好的的聚类效果和速率优势,可以有效提升数据价值密度。 Study on the value density of electric power big data lacks of quantitative evaluation index and promotion methods are limited,resulting in limited effect.In the view of this problem,the paper proposes the evaluation index of value density based on memory footprint and operation speed,and puts forward the multiple initial clustering centers-based improved k-means algorithm to make up for the problem that it relies too much on the initial cluster center.Combined with the algorithm,this paper improves the value density from different dimensions such as "dirty data",records and fields.Taking daily load forecasting as the simulation test,the results show that the defined index can well reflect the value density.The improved algorithm has better clustering effect and speed advantage,and can effectively enhance the data value density.
作者 王赛一 余建平 孙丰杰 王承民 谢宁 WANG Saiyi;YU Jianping;SUN Fengjie;WANG Chengmin;XIE Ning(State Grid Pudong Power Supply Company,Shanghai 200240,China;School of Electronic Information and Electrical Engineeri)
出处 《智慧电力》 北大核心 2019年第3期8-15,共8页 Smart Power
基金 国家自然科学基金资助项目(51777121)~~
关键词 电力大数据 价值密度 评价指标 K-MEANS算法 三层过滤机制 electric power big data value density evaluating indicator k-means algorithm three-layer filtering mechanism
  • 相关文献

参考文献12

二级参考文献196

共引文献680

同被引文献291

引证文献20

二级引证文献211

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部