期刊文献+

Analysis of a joint entry-and distance-based cordon pricing scheme: a dynamic modeling approach

Analysis of a joint entry-and distance-based cordon pricing scheme: a dynamic modeling approach
下载PDF
导出
摘要 Transportation demand management(TDM)covers strategies for reducing traffic congestion within the affected urban areas. Congestion pricing includes a branch of TDM strategies; among them, the entry-based cordon pricing, i.e., applying charge on entry, is the most popular because of practicality and social acceptance. Many researchers have investigated different second-best approaches for evaluations of cordon pricing plans, mostly by applying static traffic assignment methods. In this paper,a joint entry-and distance-based scheme is proposed to circumvent the deficiencies intrinsic to each. The optimal joint design is considered as the solution to an optimization problem, in which an equilibrium dynamic traffic assignment model is used to take account of flow variations and represent congestion effects more realistically. The problem is solved for the network of Sioux Falls by using an enumeration algorithm, and the solution is compared with those obtained for distinct entry-and distance-based schemes. Based on the results, the joint tolling has the best performance in reducing the total travel time of the travelers and in alleviating the congestion level inside the cordoned area, while generating a higher level of revenue from tolls. Furthermore, the numerical experiments show the unreliability of the results by static against dynamic modeling approach. Transportation demand management(TDM)covers strategies for reducing traffic congestion within the affected urban areas. Congestion pricing includes a branch of TDM strategies; among them, the entry-based cordon pricing, i.e., applying charge on entry, is the most popular because of practicality and social acceptance. Many researchers have investigated different second-best approaches for evaluations of cordon pricing plans, mostly by applying static traffic assignment methods. In this paper,a joint entry-and distance-based scheme is proposed to circumvent the deficiencies intrinsic to each. The optimal joint design is considered as the solution to an optimization problem, in which an equilibrium dynamic traffic assignment model is used to take account of flow variations and represent congestion effects more realistically. The problem is solved for the network of Sioux Falls by using an enumeration algorithm, and the solution is compared with those obtained for distinct entry-and distance-based schemes. Based on the results, the joint tolling has the best performance in reducing the total travel time of the travelers and in alleviating the congestion level inside the cordoned area, while generating a higher level of revenue from tolls. Furthermore, the numerical experiments show the unreliability of the results by static against dynamic modeling approach.
出处 《Journal of Modern Transportation》 2019年第1期25-38,共14页 现代交通学报(英文版)
关键词 Transportation network Traffic DEMAND management Cordon-based CONGESTION PRICING Dynamic user EQUILIBRIUM Transportation network Traffic demand management Cordon-based congestion pricing Dynamic user equilibrium
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部