期刊文献+

基于PCA-LVQ神经网络的抱砖机夹紧系统故障诊断

Fault Diagnosis Based on PCA-LVQ Neural Network for Thrust Hydraulic System of the Brick Holding Machine
下载PDF
导出
摘要 根据抱砖机液压夹紧系统的复杂性、种类多、工作环境恶劣等特征,本文采用一种基于主元分析模型PCA与学习矢量量化(LVQ)神经网络结合的液压故障诊断模型诊断抱砖机夹紧系统故障。此模型拥有主元分析的降维、计算速度快的优点,同时又有LVQ提高故障诊断效率和准确率。 According to the complexity,variety and working environment of the hydraulic clamping system of the brick-carrying machine,a hydraulic fault diagnosis model based on PCA and learning vector quantization(LVQ)neural network was adopted to diagnose the fault of clamping system of brick holding machine.This model had the advantages of dimension reduction and fast calculation of principal component analysis,and at the same time had the advantage of high recognition rate of LVQ.The results showed that using this method could greatly improve the efficiency and accuracy of fault diagnosis.
作者 赵阳 ZHAO Yang(College of Mechanical Engineering,North China University of Water Resources and Electric Power University,Zhengzhou Henan 450000)
出处 《河南科技》 2018年第35期26-28,共3页 Henan Science and Technology
关键词 抱砖机 液压系统 主元分析 故障诊断 brick holding machine thrust hydraulic system PCA-BP neural networks fault diagnosis
  • 相关文献

参考文献3

二级参考文献14

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部