期刊文献+

贴附型声子晶体双层梁结构带隙特性研究

RESEARCH ON BANDGAP CHARACTERISTICS OF ATTACHED PHONONIC CRYSTAL DOUBLE-LAYER BEAM STRUCTURE
下载PDF
导出
摘要 文中提出了一种在梁之间周期布置"软-硬-软"材料柱体构成贴附型声子晶体双层梁结构,为探索该新型低频减振结构的性能,基于COMSOL软件得到其能带结构、振动传输曲线以及模态振型,结果表明,带隙起始、截止频率分别由反对称和对称弯曲振动模态决定。此外,根据振型给出‘次带隙’存在原因,并通过与单层梁对比,指出双层梁结构的优势;最后指出几何和材料参数对带隙的影响规律,为该类新型梁在实际工程中应用提供参考。 In this paper, a new type of attached phononic crystal double-layer beam structure is proposed, in which the“soft-hard-soft”material cylinders are periodically arranged between beams. In order to explore the vibration reduction performance of the new structure in low frequency, the band structure, the vibration transmission curve and the mode shapes are obtained based on COMSOL software. The results show that the starting and cut-off frequencies of the bandgap are determined by the anti-symmetric and symmetrical bending vibration modes, respectively. In addition, the reasons for the existence of the sub-bandgap are given according to the mode shapes, and the advantages of the double-layer beam structure are pointed out by comparing with the single-layer beam structure. Finally, the influence of geometrical and material parameters on the bandgap is pointed out, which provides a reference for the application of this new type of beam in practical engineering.
作者 涂静 史治宇 TU Jing;SHI Zhiyu(State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing Univ. of Aeronatics & Astronautics, Nanjing210016, China)
出处 《低温建筑技术》 2019年第2期41-45,共5页 Low Temperature Architecture Technology
基金 国家自然科学基金项目(51320105013 51378012) 浙江省建设厅课题(2016K17)
关键词 双层梁 反对称振动模态 对称振动模态 调节规律 double-layer beam anti-symmetric vibration mode symmetric vibration mode regulation law
  • 相关文献

参考文献3

二级参考文献21

  • 1王刚,温激鸿,温熙森,郁殿龙,刘耀宗.细直梁弯曲振动中的局域共振带隙[J].机械工程学报,2005,41(10):107-110. 被引量:9
  • 2LAI Yun, ZHANG Zhaoqing. Large band gaps in elastic phononic crystals with air inclusions [ J ]. Applied Physics Letters, 2003,83 (19) :3900-3902. 被引量:1
  • 3PAROBAS I E, SIGALAS M M. Elastic band gaps in a FCC lattice of mercury spheres in aluminum [ J ]. Phys Rev B, 2002,66 (5) :052302.1-052302.3. 被引量:1
  • 4LIU Z Y, CHAN C T , SHENG P. Analytic model of phononic crystals with local resonances [ J ]. Phy Rev B,2005, 71(1) :014103.1-014103.8. 被引量:1
  • 5GOFFAUX C, SANCHEZ D J. Two-dimensional phononic crystals studied using a variational method : application to lattices of locally resonant materials [ J ]. Phys Rev B, 2003, 67(14) :144301.1-144301.10. 被引量:1
  • 6WANG Gang, WEN Xisen, WEN Jihong, LIU Yaozong. Quasi one-dimensional periodic structure with locally resonant band gap[J]. ASME Journal of Applied Mechanics, 2006, 73 ( 1 ) : 167-169. 被引量:1
  • 7Brillouin, L. wave Propagation in Periodic Structure.Dover Publications, New York, 1953, Chapter 1. 被引量:1
  • 8M Heckl. Investigation the vibration of grillages and other simple beam structure. J Acoust Soc Am.1964, 36:1335- 1343. 被引量:1
  • 9D J Mead. Vibration response and wave propagation in periodic structures, transaction of the American Society of Mechanical Engineers, Journal Engineering for industry 1971, 93 : 783- 792. 被引量:1
  • 10Y K Tso. The Transmission of Vibration through a coupled Periodic Structure. J Sound Vib. 1998, 215(1):63-79. 被引量:1

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部