摘要
考虑一类由谱正α-稳定过程驱动的SIS (易感-感染-易感)模型.首先证明了全局正解的存在唯一性;其次,利用Khasminskii引理和Lyapunov方法,得到了平稳分布存在唯一性的条件,并证明了模型的指数遍历性;最后,给出了模型灭绝的条件.
A susceptible-infected-susceptible(SIS)epidemic model driven by spectrally positive α-stable processes is considered.Firstly,the uniqueness and the existence of the global positive solution are proved.Next,by using Khasminskii’s lemma and the Lyapunov method,conditions for the existence of a unique stationary distribution are given.In addition,the model is shown to be exponentially ergodic.Finally,conditions for extinction of the model are given.
作者
张振中
张权
杨红倩
张恩华
ZHANG Zhen-zhong;ZHANG Quan;YANG Hong-qian;ZHANG En-hua(Department of Applied Mathematics,Donghua University,Shanghai 201620,China)
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2019年第1期1-12,38,共13页
Journal of East China Normal University(Natural Science)
基金
教育部人文社会科学研究规划基金(17YJA910004)
关键词
谱正α-稳定过程
平稳分布
指数遍历性
灭绝性
spectrally positive α-stable processes
stationary distribution
exponential ergodicity
extinction