期刊文献+

基于分段加权的反向稀疏跟踪算法研究

Research on Piecewise Weighted Inverse Sparse Tracking Algorithm
下载PDF
导出
摘要 为提高稀疏表示跟踪模型性能,提出一种分段加权的反向稀疏跟踪算法,将跟踪问题转化为在贝叶斯框架下寻找概率最高的候选对象问题,构造不同的分段权重函数来分别度量候选目标与正负模板的判别特征系数。通过池化来降低跟踪结果的不确定性干扰,选择正负模板加权系数差值最大的候选表示作为跟踪结果。实验表明,在光照变化、遮挡、快速运动、运动模糊情况下,所提出的算法可以确保跟踪结果的准确性和鲁棒性。 To improve the performance of sparse representation tracking model,a piecewise weighted inverse sparse tracking algorithm is proposed,which translates the tracking problem into finding the most probable candidate target within Bayesian framework.Different piecewise weighted functions are constructed to separately measure the discriminant characteristic coefficients of the candidate target with the positive and negative templates.The pooling is utilized to reduce the uncertainty of the tracking results of interference,then the candidate represented by the biggest difference between the positive and negative template weight coefficients is chosen as the tracking result.Experiments indicate that the proposed algorithm can ensure the accuracy and robustness of tracking results in case of the light changes,occlusion,fast motion,motion and blur.
作者 邵豪 张莹 王飞 张东波 薛亮 SHAO Hao;ZHANG Ying;WANG Fei;ZHANG Dongbo;XUE Liang(College of Information Engineering,Xiangtan University,Xiangtan,Hunan 411105,China;National Engineering Laboratory for Robot Visual Perception and Control Technology,Changsha 410082,China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第4期159-162,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.61773330) 湖南省自然科学基金(No.2017JJ2251)
关键词 反向稀疏 贝叶斯估计 分段加权 目标跟踪 reverse sparse Bayesian estimation piecewise weighted target tracking
  • 相关文献

参考文献5

二级参考文献39

  • 1Yang Hanxuan,Zheng Feng,Wang Liang,et al.Recent advances and trends in visual tracking:a review[J].Neurocomputing,2011,74(18):3823-3831. 被引量:1
  • 2Ning Jifeng,Zhang Lei,Zhang David,et al.Robust mean shift tracking with corrected background-weighted histogram[J].IET Computer Vision,2012,6(1):62-69. 被引量:1
  • 3Leichter I,Lindenbaum M,Rivlin E.Mean shift tracking with multiple references color histograms[J].Computer Vision and Image Understanding,2010,114(3):400-408. 被引量:1
  • 4Laura S L,Erik L M.Distribution fields for tracking[C]//IEEE Conference on Computer Vision and Pattern Recognition,2012:1910-1917. 被引量:1
  • 5Zhang Kaihua,Zhang Lei,Yang Ming Hsuan.Real-time compressive tracking[C]//Proc of European Conference on Computer Vision,2012:864-877. 被引量:1
  • 6Zhang Kaihua,Song Huihui.Real-time visual tracking via online weighted multiple instance learning[J].Pattern Recognition,2013,46(1):397-411. 被引量:1
  • 7Li X,Zhang T,Shen X,et al.Object tracking using an adaptive Kalman filter combined with mean shift[J].Optical Engineering,2010,49(2):20503-20506. 被引量:1
  • 8Babenko B,Yang M,Belongie S.Robust object tracking with online multiple instance learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(8):1619-1632. 被引量:1
  • 9Wu Yi,Lim J, Yang M H. Online Object Tracking: A Benchmark~ C l//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA : IEEE Press, 2013 : 2411-2418. 被引量:1
  • 10Smeulders A W M,Chu D M, Cucchiara R, et al. Visual Tracking:An Experimental Survey [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(7) : 1442-1468. 被引量:1

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部