期刊文献+

基于数字图像的隧道表观病害识别方法研究 被引量:14

Apparent Tunnel Diseases Identification Based on Digital Images
下载PDF
导出
摘要 阐述了公路隧道结构快速检测车图像采集的原理,以隧道结构表观图像为研究目标,系统分析了隧道裂缝和渗漏水病害的图像特征;基于裂缝图像特征,通过CTA测度算法和边缘检测结合可准确地识别裂缝;根据渗漏水图像特征,采用改进的CTA算法,并结合形态学处理方法,可实现隧道结构渗漏水的识别与定位。研究表明:采用CTA测度及其改进算法可较好地实现表观病害识别,可有效地减弱线缆干扰、光照变化带来的影响。 The principle of image acquisition of fast detection vehicle for highway tunnel structure was expounded.Aiming at the apparent image of tunnel structure,the image characteristics of tunnel cracks and seepage diseases were systematically analyzed.Based on the characteristics of fracture image,cracks can be accurately identified by combining CTA measurement algorithm with edge detection.According to the characteristics of seepage image,the improved CTA algorithm and morphological processing method can be used to identify and locate the seepage of tunnel structure.The experiment results show that: apparent diseases can be identified effectively by using CTA measure and its improved algorithm,which can effectively reduce the influence of cable interference and illumination change.
作者 何国华 刘新根 陈莹莹 杨俊 钟北 HE Guohua;LIU Xingen;CHEN Yingying;YANG Jun;ZHONG Bei(Guizhou Expressway Group Co.,Ltd.,Guiyang 550004,Guizhou,P.R.China;Shanghai Tongyan Civil Engineering Technology Co.,Ltd.,Shanghai 200092,P.R.China;Shanghai Engineering Technology Research Centre of Underground Infrastructure Safety Inspection and Maintenance Equipment,Shanghai 200092,P.R.China)
出处 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第3期21-26,共6页 Journal of Chongqing Jiaotong University(Natural Science)
基金 贵州省科技计划项目(黔科合支撑[2016]2318) 上海人才发展资金资助计划(2017055) 上海市2018年技术标准专项项目(18DZ2202300)
关键词 公路隧道 检测 图像识别 裂缝 渗漏水 highway tunnel inspection image identification crack seepage water
  • 相关文献

参考文献6

二级参考文献67

共引文献165

同被引文献169

引证文献14

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部