摘要
结构化凹坑表面能够有效降低零件表面的流体拖曳摩擦阻力,从而改善零件在流体中的运动性能。从生物学的叶序排布理论出发,设计了磨粒叶序排布的超硬材料砂轮,并应用该砂轮磨削外圆生成结构化的凹坑表面。利用Matlab软件对磨粒叶序排布砂轮的磨削过程进行运动学仿真,获得了磨粒叶序排布参数及磨削参数对磨削区域内结构化凹坑表面形貌的影响规律。仿真及实验结果表明:转速比影响凹坑的周向排布和凹坑尺寸,转速比越高,凹坑周向排布越密集,凹坑尺寸越小;叶序系数影响凹坑的轴向排布,叶序系数越小,凹坑轴向排布越密集;磨削深度影响凹坑尺寸,磨削深度越深,凹坑宽度和深度越大,毛刺隆起高度越高,约为磨削深度的一半。
Structured dimple surface can effectively reduce the drag friction resistance of the part surface,thereby improving the movement performance of the part in the fluid.A superhard material grinding wheel with phyllotactic-arranged abrasive grains is designed based on the theory of biological leaf alignment,and used to grind the structured dimple surface of outer circle.In order to explore the grinding principle of the structured dimple surface,the kinematics simulation of grinding process of abrasive grain phyllotactic arrangement wheel is carried out by using MATLAB.The influences of abrasive grain phyllotactic arrangement parameters and grinding parameters on the surface topography of structured pits in grinding area are studied.The simulation results show that the rotational speed ratio affects the dimple radial arrangement and dimple size,which is that the higher the rotational speed ratio is,the denser the dimple radial arrangement is and the smaller the dimple size is.The phyllotactic coefficient affects the dimple axial arrangement,thus smaller phyllotactic coefficient leading to denser dimple axial arrangement.The grinding depth affects the dimple size.As the wheel grinds deeper,the dimple width and depth become larger,and so does the burr heave height which is about half of the grinding depth.
作者
车东泽
吕玉山
陈天宇
熊伟
李兴山
CHE Dongze;LYU Yushan;CHEN Tianyu;XIONG Wei;LI Xingshan(School of Mechanical Engineering, Shenyang Ligong University, Shenyang 110159, China)
出处
《金刚石与磨料磨具工程》
CAS
北大核心
2019年第1期47-53,共7页
Diamond & Abrasives Engineering
基金
国家自然科学基金(No51875368
No51175352)
关键词
超硬磨料砂轮
结构化表面
叶序排布
凹坑表面
仿真
superhard abrasive grinding wheel
structured surface
phyllotactic arrangement
dimpled surface
simulation