摘要
为探求沼液穴灌条件下土壤入渗特征及适宜入渗模型,通过室内试验研究了沼液配比(沼液∶水,体积比,1∶4、1∶6、1∶8及纯水)、穴孔直径(3、5、7 cm)和土壤容重(1.35、1.45 g·cm^(-3))对土壤入渗特征的影响,利用数理统计方法分析影响沼液穴灌入渗的因素和湿润体变化规律,同时应用Philip入渗模型对沼液穴灌累积入渗量进行了拟合分析。结果表明:沼液穴灌累积入渗量均随沼液配比和土壤容重的增大而降低,随着穴孔直径的增加而增大,当入渗历时180 min时,土壤容重1.35 g·cm^(-3)和1.45 g·cm^(-3)的CK处理累积入渗量分别是沼液配比为1∶4、1∶6、1∶8处理的3.62、3.12、2.77倍和3.47、2.64、2.16倍;湿润体形状随穴孔直径的增加逐渐由水平轴大于垂直轴的椭球体趋向于水平轴小于垂直轴的椭球体,土壤容重1.35 g·cm^(-3)和1.45 g·cm^(-3)对应各穴孔直径(3、5、7 cm)的垂向最大湿润距离(V)与水平最大湿润距离(H)的比值(V/H)分别为0.929、1.081、1.111和0.957、1.048、1.064;幂函数能够准确描述湿润锋最大湿润距离与时间的函数关系;建立的多元线性方程能够较好描述累积入渗量与土壤容重、穴孔直径和沼液配比的关系,偏回归系数检验均达到显著或极显著水平; Philip入渗模型能够准确描述沼液穴灌累积入渗量随时间的变化规律,决定系数(R2)在0.98以上; Philip入渗模型中的土壤吸渗率(S)随穴孔直径的增大而增加,随沼液配比和土壤容重的增加而降低;土壤稳定入渗率(A)为负值与沼液的粘性及所含有的有机悬浮颗粒有关。基于以上分析,在农业生产中建议实施方案为:土壤容重1.35 g·cm^(-3)、穴孔直径5 cm、沼液配比1∶6和土壤容重1.45 g·cm^(-3)、穴孔直径7 cm、沼液配比1∶8。
Biogas slurry hole-irrigation technology is a kind of on going integration of water-biogas slurry irrigation method, to explore the soil infiltration characteristics and suitable infiltration model of the conditions of biogas slurry hole-irrigation, effects of biogas slurry ratio(the volume ratios of digestate to water were: 1∶4, 1∶6 and 1∶8), hole diameter(3, 5 and 7 cm), and soil bulk density(1.35, 1.45 g·cm -3 ) on the soil infiltration characteristics were analyzed through laboratory experiments, and impact factors of infiltration and wetted body under the biogas slurry hole-irrigation were analyzed with the mathematical statistics method. At the same time, using Philip infiltration model analyzed the biogas slurry hole-irrigation cumulative infiltration. The results showed that the cumulative infiltration volume increased with decreasing biogas slurry:water ratio and soil bulk density but increased with increasing the hole diameter. After the infiltration lasted for 180 min, the cumulative infiltration volume in CK treatment were 3.62, 3.12, 2.77 times and 3.47, 2.64, 2.16 times compared to the digestate treatments of 1∶4, 1∶6 and 1∶8 at the soil bulk density of 1.35 g·cm^-3 and 1.45 g·cm ^-3 . The shape of the wetting body is an ellipsoid, which changes gradually with increasing the hole diameter, from greater horizontal axis to greater vertical axis. The ratios of horizontal to vertical axis ( V/H ) were 0.929, 1.081, 1.111 and 0.957, 1.048, 1.064 when the hole diameter were 3, 5 cm and 7 cm at the soil bulk density of 1.35 g·cm -3 and 1.45 g·cm ^-3 . The power function can be used to accurately describe the functional relationship between the maximum wetting distance and time. Meanwhile, the relationship between the cumulative infiltration volume and the soil bulk density, hole diameter, and the biogas slurry ratio can be modeled by the established multiple linear equation perfectly, and the partial regression coefficient test was at significant or very significant level. Philip infiltrat
作者
郑健
张彦宁
王燕
张恩继
ZHENG Jian;ZHANG Yan-ning;WANG Yan;ZHANG En-ji(China Western Research Center of Energy & Environment, Lanzhou University of Technology, Lanzhou, Gansu 730050, China;Gansu Key Laboratory of Complementary Energy System of Biomass and Solar Energy, Lanzhou, Gansu 730050, China;College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China)
出处
《干旱地区农业研究》
CSCD
北大核心
2019年第1期144-150,共7页
Agricultural Research in the Arid Areas
基金
国家自然科学基金资助项目(51509122
51369014)
甘肃省高等学校科技成果转化项目(2018D-04)
甘肃省自然科学基金(18JR3RA154)
2018年杨凌示范区产学研用协同创新重大项目计划(2018CXY-14)
关键词
沼液穴灌
累积入渗量
湿润体
Philip入渗模型
biogas slurry hole-irrigation
cumulative infiltration volume
wetted body
Philip infiltration model