摘要
Background: Hydrogen-rich saline(HRS) has antioxidative, anti-inflammatory and anti-apoptotic properties. We investigated the effects of hydrogen on hepatic ischemia-reperfusion(I/R) and laparoscopic hepatectomy in swine. Methods: Twenty-one healthy Bama miniature pigs were randomly divided into the sham group, ischemia-reperfusion injury(IRI) group, HRS-5(5 m L/kg) group, and HRS-10(10 m L/kg) group. HRS was injected through the portal vein 10 min before reperfusion and at postoperative day 1, 2 and 3. The roles of HRS on oxidative stress, inflammatory response and liver regeneration were studied. Results: Compared with the IRI group, HRS treatment attenuated oxidative stress by increasing catalase activity and reducing myeloperoxidase. White blood cells in the HRS-10 group were reduced compared with the IRI group( P < 0.01). In the HRS-10 group, interleukin-1 beta, interleukin-6 and tumor necrosis factor alpha, C-reactive protein and cortisol were downregulated, whereas interleukin-10 was upregulated. In addition, HRS attenuated endothelial cell injury and promoted the secretion of angiogenic cytokines, including vascular endothelial growth factor, angiopoietin-1 and angiopoietin-2. HRS elevated the levels of hepatocyte growth factor, Cyclin D1, proliferating cell nuclear antigen, Ki-67 and reduced the secretion of transforming growth factor-beta. Conclusions: HRS treatment may exert a protective effect against I/R and hepatectomy-induced hepatic damage by reducing oxidative stress, suppressing the inflammatory response and promoting liver regeneration.
Background: Hydrogen-rich saline(HRS) has antioxidative, anti-inflammatory and anti-apoptotic properties. We investigated the effects of hydrogen on hepatic ischemia-reperfusion(I/R) and laparoscopic hepatectomy in swine. Methods: Twenty-one healthy Bama miniature pigs were randomly divided into the sham group, ischemia-reperfusion injury(IRI) group, HRS-5(5 m L/kg) group, and HRS-10(10 m L/kg) group. HRS was injected through the portal vein 10 min before reperfusion and at postoperative day 1, 2 and 3. The roles of HRS on oxidative stress, inflammatory response and liver regeneration were studied. Results: Compared with the IRI group, HRS treatment attenuated oxidative stress by increasing catalase activity and reducing myeloperoxidase. White blood cells in the HRS-10 group were reduced compared with the IRI group( P < 0.01). In the HRS-10 group, interleukin-1 beta, interleukin-6 and tumor necrosis factor alpha, C-reactive protein and cortisol were downregulated, whereas interleukin-10 was upregulated. In addition, HRS attenuated endothelial cell injury and promoted the secretion of angiogenic cytokines, including vascular endothelial growth factor, angiopoietin-1 and angiopoietin-2. HRS elevated the levels of hepatocyte growth factor, Cyclin D1, proliferating cell nuclear antigen, Ki-67 and reduced the secretion of transforming growth factor-beta. Conclusions: HRS treatment may exert a protective effect against I/R and hepatectomy-induced hepatic damage by reducing oxidative stress, suppressing the inflammatory response and promoting liver regeneration.
基金
supported by grants from the National Natural Science Foundation of China(31472245 and 31772807)