期刊文献+

基于移动数据的用户出行方式识别研究 被引量:5

User Travel Mode Recognition Based on Mobile Location Data
下载PDF
导出
摘要 为研究智能手机所采集到的位置数据在识别用户出行方式领域的应用,首先,比选出速度、速度的百分位数、轨迹点数量占比、出行距离、停止率这5个适用于移动终端定位数据区分出行方式的特征变量,并对各特征变量的判别阈值进行了定义。然后,针对基站分布导致的数据偏差和位置信息漂移等问题,采用扇形定位结合地图匹配技术对数据进行了修正,进而在对时间阈值和距离阈值分割的基础上提出了移动终端用户出行链的获取方法。接着,建立C4.5决策树模型,以此判别移动终端用户的出行方式。最后,基于在某地区采集的7 000部移动终端的位置数据(包含:终端编号、定位时刻、经度、纬度)来对用户的出行方式进行研究。结果表明,模型在区分机动车和非机动车时准确率较高,达到了90%以上;在进一步区分中,如区分步行与自行车以及公交车和小汽车的出行上准确率相对较低,但也达到了80%以上的精度。 In order to study the application of location data of intelligent mobile phones in the field of identifying the users’travel modes,firstly,five characteristic variables applied to distinguish travel modes by mobile terminal positioning data were compared and selected,including speed,percentile of speed,proportion of track point number,trip distance and stopping rate.The threshold value of each characteristic variable was determined.Then,aiming at the problems of data deviation and position information drift and other problems caused by base station distribution,the data was modified by sector positioning and map matching technology.Based on the segmentation of time threshold and distance threshold,the acquisition method of mobile terminal user travel chain was proposed.After that,C4.5 decision tree model was established to distinguish mobile terminal users’travel modes.Finally,the location data,including terminal number,positioning time,longitude and latitude,of 7 000 mobile terminals in one area was collected to study those users’travel modes.The results showed that there was high accuracy in distinguishing motor vehicles and non-motor vehicles,which was more than 90%.Then in further distinguish,such as between walking and cycling,as well as bus and car travel,there was relatively low accuracy,but it also achieved an accuracy of more than 80%.
作者 张鹤鹏 黄达 杜辰 李晓璐 朱广宇 ZHANG He-peng;HUANG Da;DU Chen;LI Xiao-lu;ZHU Guang-yu(School of Traffic and Transportation,Beijing Jiaotong University,Beijing 100044,China;Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport,Beijing Jiaotong University,Beijing 100044,China)
出处 《交通运输研究》 2018年第6期47-54,共8页 Transport Research
基金 国家自然科学基金项目(61872037) 国家自然科学基金项目(61833002) 深圳市交通公用设施建设项目(BYTD-KT-002-2)
关键词 移动终端 位置数据 出行方式 城市规划 决策树 C4.5算法 mobile terminal location data travel mode urban planning decision tree C4.5 algo.rithm
  • 相关文献

参考文献8

二级参考文献59

  • 1孙棣华,马丽,陈伟霞.基于手机定位及聚类分析的实时交通参数估计[J].交通运输系统工程与信息,2005,5(3):18-23. 被引量:7
  • 2李海峰,王炜.基于神经网络的交通方式选择模型[J].公路交通科技,2007,24(7):132-136. 被引量:16
  • 3杨飞.基于手机定位的交通OD数据获取技术[J].系统工程,2007,25(1):42-48. 被引量:49
  • 4Jang T. Causal relationship among travel mode, activity, and travel patterns[J]. Journal of Transportation Engi- neering, 2002, 129(1): 16 - 22. 被引量:1
  • 5Sheung Yuen Amy Tsui, Shalaby A S. Enhanced system for Link and mode identification for personal travel sur- veys based on global positioning systems[J]. Transporta- tion Research Record: Journal of the TRA, 2006, 1972 (I): 38-45. 被引量:1
  • 6Widhalm P, Nitsehe P, Branaie N. Transport mode detee- tion with realistic Smartphone sensor data[C]//PatternRecognition (ICPR), 2012 21st Internationa, 2012:573 - 576. 被引量:1
  • 7杨兆升,王媛.基于手机探测车的交通信息采集方法研究[C]//第一届中国智能交通年会论文集.中国上海,2005:321-326. 被引量:1
  • 8Cristianini N, Shawe-Taylor J. An introduction to sup- port vector machines and other kernel-based learning methods[M]. Cambridge: Cambridge university press, 2000. 被引量:1
  • 9Miao Lin, Hsu Wenjing. Mining GPS data for mobility patterns: A survey.http://www.sciencedirect.com/science/article/pii/S1574119213000825. 被引量:1
  • 10谢幸,郑宇.基于地理信息的用户行为理解[J].计算机学会通讯,2008,4(10):45-51. 被引量:1

共引文献37

同被引文献31

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部