期刊文献+

加权颜色粒子滤波与SIFT特征双融合的行人跟踪 被引量:3

Double combination of weighted color particle filter and SIFT for pedestrian tracking
下载PDF
导出
摘要 为改善粒子退化现象,提高粒子滤波算法对于遮挡目标的跟踪精度,提出加权颜色特征与SIFT特征双层融合的粒子滤波算法。用粒子的位置信息对传统粒子权重进行改进,作为内层融合,对SIFT点匹配跟踪框与粒子滤波跟踪框进行外融合,改善遮挡情况下粒子退化的情况,提高跟踪精度。在VOT2014视频数据库上的实验结果表明,提出算法平均跟踪精度为95.03%,较传统粒子滤波算法提高了6个百分点。 Particle degeneracy is a serious problem for occlusion object tracking in terms of particle filter algorithm.To solve the problem,double combination of weighted color feature and SIFT based particle filter algorithm was proposed.The location information was adopted to improve the conventional particle weight as the inner fusion.The tracking box of SIFT points matching and that of particle filter were fused afterwards to improve particle degeneracy and promote the tracking accuracy.Experimental results on VOT2014 video database show that the average tracking accuracy of the proposed algorithm is 95.03%,which is 6 percentage points higher than that of the traditional particle filter algorithm.
作者 魏旭东 秦立峰 WEI Xu-dong;QIN Li-feng(College of Mechanical and Electronic Engineering,Northwest A&F University,Yangling 712100,China;School of Electronic and Information Engineering,Xi'an Jiaotong University,Xi'an 710049,China;Key Laboratory of Agricultural Internet of Things,Ministry of Agriculture,Yangling 712100,China)
出处 《计算机工程与设计》 北大核心 2019年第2期556-561,共6页 Computer Engineering and Design
基金 陕西省农业科技创新与攻关基金项目(2015NY034)
关键词 目标跟踪 遮挡 粒子滤波 SIFT点 算法融合 粒子退化 visual tracking occlusion particle filter SIFT point algorithm combination particle degeneracY
  • 相关文献

参考文献15

二级参考文献265

  • 1刘相滨,邹北骥,孙家广.基于边界跟踪的快速欧氏距离变换算法[J].计算机学报,2006,29(2):317-323. 被引量:36
  • 2杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267. 被引量:74
  • 3李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 4Bakhtari A, Mackay M, and Benhabib B. Active-vision for the autonomous surveillance of dynamic, multi-object environments[J]. Journal of Intelligent Robot System, 2009, 54(4): 567-593. 被引量:1
  • 5Vadakkepat P, Lim P, Desilva L, et al.. Multimodal approach to human-face detection and tracking[J]. IEEE Transactions on Industrial Electronics, 2008, 55(3): 1385-1392. 被引量:1
  • 6Matei B, Sawhney H, and Samarasekera S. Vehicle tracking across non-overlapping cameras using joint kinematic and appearance features[C]. The 24th IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs 2011: 3465-3472. 被引量:1
  • 7Kalal Z, Mikolajczyk K, and Matas J. Tracking- learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422. 被引量:1
  • 8Yang Han-xuan, Shao Ling, Zhang Feng, et al.. Recent advances and trends in visual tracking: a review[J]. Neurocomputing, 2012, 74(18): 3823-3831. 被引量:1
  • 9Kwon J and Lee K. Tracking of a non-rigid object via patch- based dynamic appearance modeling and adaptive basin hopping Monte Carlo sampling[C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami, 2009: 1208-1215. 被引量:1
  • 10Nejhum S, Ho J, and Yang Ming-hsuan. Online visual tracking with histograms and articulating blocks[J]. Computer Vision and Image Understanding, 2010, 114(8): 901-914. 被引量:1

共引文献483

同被引文献32

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部